3 ' LH“ I_-. \ .I
N .‘ . & Jll

T A -
RMK GROUP OF EDUCATIONAL

ANITA GOEL
@ Pearson AJAY MITTAL

Computer
Fundamentals and
Programming in C

This page is intentionally left blank

Computer
Fundamentals and
Programming in C

Anita Goel

Department of Computer Science and Engineering
Dyal Singh College

University of Delhi

New Delhi

Ajay Mittal

Department of Computer Science and Engineering
PEC University of Technology

Chandigarh

Copyright © 2016 Pearson India Education Services Pvt. Ltd

Published by Pearson India Education Services Pvt. Ltd, CIN: U72200TN2005PTC057128, formerly
known as TutorVista Global Pvt. Ltd, licensee of Pearson Education in South Asia.

No part of this eBook may be used or reproduced in any manner whatsoever without the publisher’s prior
written consent.

This eBook may or may not include all assets that were part of the print version. The publisher reserves the
right to remove any material in this eBook at any time.

ISBN 978-93-325-7681-0
eISBN 978-93-325-7813-5

Head Office: A-8 (A), 7th Floor, Knowledge Boulevard, Sector 62, Noida 201 309, Uttar Pradesh, India.
Registered Office: 4th Floor, Software Block, Elnet Software City, TS-140, Block 2 & 9,

Rajiv Gandhi Salai, Taramani, Chennai 600 113, Tamil Nadu, India.

Fax: 080-30461003, Phone: 080-30461060

www.pearson.co.in, Email: companysecretary.india@pearson.com

http://www.pearson.co.in
mailto:companysecretary.india@pearson.com

Contributions from

Dr S. Radhika
Associate Professor
Department of Science and Humanities
R.M.K. Engineering College

Dr J. Faritha Banu
Associate Professor
Department of Computer Science and Engineering
R.M.K. College of Engineering and Technology

Ms G. Nirmala

Assistant Professor
Department of Science and Humanities
R.M.D. Engineering College

This page is intentionally left blank

Roadmap to the Syllabus

Computer Programming
(Common to all branches of B.E./B.Tech. Programmes)

UNIT I:

Introduction

Generation and Classification of Computers — Basic Organization of a Computer — Number
System — Binary — Decimal — Conversion — Problems. Need for Logical Analysis and Thinking —
Algorithm — Pseudo Code — Flow Chart.

Refer Chapters 1 and 2

UNIT II:

C Programming Basics

Problem Formulation — Problem Solving — Introduction to “C” Programming — Fundamentals —
Structure of a “C” Program — Compilation and Linking Processes — Constants, Variables —
Data Types — Expressions Using Operators in “C” — Managing Input and Output Operations —
Decision Making and Branching — Looping Statements — Solving Simple Scientific and Statistical
Problems.

Refer Chapters 2, 3, 4 and 5

UNIT III:

Arrays and Strings

Arrays — Initialization — Declaration — One Dimensional and Two Dimensional Arrays —
String — String Operations — String Arrays. Simple Programs — Sorting — Searching — Matrix
Operations.

Refer Chapters 6 and 7

UNITIV:

Functions and Pointers

Function — Definition of Function — Declaration of Function — Pass by Value — Pass by
Reference — Recursion — Pointers — Definition — Initialization — Pointers Arithmetic — Pointers
and Arrays — Example Problems.

Refer Chapters 6 and 8

viii Roadmap to the Syllabus

UNIT V:

Structures and Unions

Introduction — Need for Structure Data Type — Structure Definition — Structure Declaration —
Structure within a Structure — Union — Programs Using Structures and Unions — Storage Classes,
Pre-processor Directives.

Refer Chapters 9 and 10

Brief Contents

Preface xxi
Part-l Computer Fundamentals 1.1
I Basics of Computer 1.3
2 Data Representation and Programming Fundamentals 2.1
Part-1l Basics of C Programming 3.1
3 Data Types, Variables and Constants 3.3
4 Operators and Expressions 4.1
5 Decision-Making and Looping Statements 5.1
Part-1ll Arrays, Pointers and Strings 6.1
6 Arrays and Pointers 6.3
7 Strings and Character Arrays 7.1
Part-1V Functions 8.1
8 Functions 8.3
Part-V Structures and Unions 9.1
9 Structures and Unions 9.3
10 Storage Class and Preprocessor Directives 10.1

Index 1.1

This page is intentionally left blank

Preface

Contents

Part-1 Computer Fundamentals

I Basics of Computer

1.1
1.2
1.3
1.4
1.5

1.6

1.7

1.8

1.9

1.10
1.11
1.12
1.13
1.14

Introduction

Digital and Analog Computers

Characteristics of Computer

History of Computer

Generations of Computer

1.5.1 First Generation (1940 to 1956): Using Vacuum Tubes
1.5.2 Second Generation (1956 to 1963): Using Transistors
1.5.3 Third Generation (1964 to 1971): Using Integrated Circuits
1.5.4 Fourth Generation (1971 to present): Using Microprocessors
1.5.5 Fifth Generation (Present and Next): Using Artificial Intelligence
Classification of Computer

1.6.1 Microcomputers

1.6.2 Minicomputers

1.6.3 Mainframe Computers

1.6.4 Supercomputers

The Computer System

1.7.1 The Input-Process-Output Concept

1.7.2 Components of Computer Hardware

Central Processing Unit

1.8.1 Arithmetic Logic Unit

1.8.2 Registers

1.8.3 Control Unit

Memory Unit

1.9.1 Cache Memory

1.9.2 Primary Memory

1.9.3 Secondary Memory

Instruction Format

Instruction Set

Instruction Cycle

Microprocessor

Interconnecting the Units of a Computer

1.14.1 System Bus

1.14.2 Expansion Bus

1.14.3 External Ports

xxi

1.1

1.3

1.4
1.4
1.4
1.5
1.6
1.7
1.7
1.8
1.8
1.9
1.9
1.10
1.12
1.12
1.12
1.13
1.14
1.15
1.16
1.17
1.17
1.18
1.18
1.19
1.20
1.20
1.21
1.21
1.22
1.23
1.24
1.25
1.26
1.26

xii Contents

1.15
1.16

1.17
1.18

Performance of a Computer
Inside a Computer Cabinet
1.16.1 Motherboard

1.16.2 Ports and Interfaces
1.16.3 Expansion Slots
1.16.4 Ribbon Cables
1.16.5 Memory Chips
1.16.6 Storage Devices
1.16.7 Processor
Application of Computers
Summary

Exercise Questions
Additional Questions

2 Data Representation and Programming Fundamentals

2.1
22

2.3

2.4
2.5
2.6
2.7

2.8

29

2.10

2.11
2.12
2.13
2.14
2.15

Data Representation

Number System

2.2.1 Decimal Number System

2.2.2 Binary Number System

22.3 Octal Number System

224 Hexadecimal Number System

Conversion from Decimal to Binary, Octal, Hexadecimal

2.3.1 Converting Decimal Integer to Binary, Octal, Hexadecimal
2.3.2 Converting Decimal Fraction to Binary, Octal, Hexadecimal
2.3.3 Converting Decimal Integer.Fraction to Binary, Octal, Hexadecimal
Conversion of Binary, Octal, Hexadecimal to Decimal
Conversion of Binary to Octal, Hexadecimal

Conversion of Octal, Hexadecimal to Binary

Binary Arithmetic

2.7.1 Binary Addition

2.7.2 Binary Subtraction

Signed and Unsigned Numbers

2.8.1 Complement of Binary Numbers

Binary Data Representation

29.1 Fixed Point Number Representation

2.9.2 Floating Point Number Representation

Binary Coding Schemes

2.10.1 EBCDIC

2.10.2 ASCII

2.10.3 Unicode

Logic Gates

Programming Fundamentals

Program Development Life Cycle

Algorithm

Control Structures

1.26
1.28
1.28
1.29
1.30
1.31
1.31
1.32
1.32
1.32
1.34
1.36
1.41

2.1

2.2
2.2
2.3
2.3
2.3
2.3
25
2.5
2.7
2.8
29
2.11
2.12
2.13
2.13
2.15
2.17
2.17
2.18
2.19
2.21
2.21
2.22
2.22
2.22
2.23
2.25
2.25
227
227

2.16

2.17

2.18

2.19

2.20

Flowchart

2.16.1 Flowchart Symbols

2.16.2 Preparing a Flowchart

Pseudo Code

2.17.1 Preparing a Pseudo Code
Programming Paradigms

2.18.1 Structured Programming

2.18.2 Object-Oriented Programming (OOP)
2.18.3 Aspect-Oriented Programming (AOP)
Problem Formulation and Problem Solving
2.19.1 Problem Solving

2.19.2 Problem Formulation

Summary

Exercise Questions

Conceptual Questions and Answers

Additional Questions

Programming Exercise

Part-1l Basics of C Programming

3 Data Types, Variables and Constants

3.1
3.2

3.3
34
3.5

3.6
3.7

3.8

3.9
3.10

Introduction

C Standards

3.21 Kernighan & Ritchie (K&R) C Standard
3.2.2 ANSI C/Standard C/C89 Standard
3.2.3 ISO C/C90 Standard

324 (C99 Standard

Learning Programming Language and Natural Language: An Analogy
C Character Set

Identifiers and Keywords

3.5.1 Identifiers

3.5.2 Keywords

Declaration Statement

Data Types

3.7.1 Basic/Primitive Data Types

3.7.2 Derived Data Types

3.7.3 User-defined Data Types

Type Qualifiers and Type Modifiers

3.8.1 Type Qualifiers

3.8.2 Type Modifiers

Difference Between Declaration and Definition
Data Object, L-value and R-value

3.10.1 Data Object

3.10.2 L-value

3.10.3 R-value

Contents

Xiii

2.28
2.28
2.28
2.30
2.31
2.33
2.33
2.34
2.35
2.36
2.36
2.36
2.36
2.38
2.38
241
2.45

3.1

3.3

3.4
3.4
3.4
3.4
3.4
3.4
3.5
3.5
3.6
3.6
3.7
3.7
3.8
3.8
3.8
3.8
3.9
3.9
3.9
3.9
3.11
3.11
3.11
3.11

xiv Contents

3.11

3.12

3.13
3.14
3.15
3.16

Variables and Constants

3.11.1 Variables

3.11.2 Constants

Structure of a C Program

3.12.1 Comments

3.12.2 Sectionl: Preprocessor Directive Section
3.12.3 Section 2: Global Declaration Section
3.12.4 Section 3: Functions Section
Executing a C Program

Compilation and Linking process

More Programs for Startup

Summary

Exercise Questions

Conceptual Questions and Answers

Code Snippets

Multiple-choice Questions

Outputs and Explanations to Code Snippets
Answers to Multiple-choice Questions
Programming Exercises

Test Yourself

4 Operators and Expressions

4.1
4.2

43

44

4.5
4.6
4.7
4.8
4.9

Introduction

Expressions

421 Operands

422 Operators

Simple Expressions and Compound Expressions
43.1 Precedence of Operators

4.3.2 Associativity of Operators

Classification of Operators

44.1 Classification Based on Number of Operands
4.4.2 Classification Based on Role of Operator
Combined Precedence of All Operators
Reading Strings from the Keyboard

Printing Strings on the Screen

Unformatted Functions

Summary

Exercise Questions

Conceptual Questions and Answers

Code Snippets

Multiple-choice Questions

Outputs and Explanations to Code Snippets
Answers to Multiple-choice Questions
Programming Exercises

Test Yourself

3.12
3.12
3.12
3.16
3.17
3.17
3.17
3.18
3.18
3.19
3.20
3.25
3.25
3.25
3.34
3.36
3.39
3.43
3.43
3.48

4.1

4.2
4.2
4.2
4.2
4.2
4.3
4.3
43
4.3
44
4.18
4.20
4.25
4.27
4.32
4.33
4.33
4.38
4.45
4.47
4.63
4.64
4.68

5 Decision-Making and Looping Statements

51
52
53

5.4

55

5.6

Introduction

Statements

Classification of Statements

5.3.1 Based Upon the Type of Action they Perform
5.3.2 Based Upon the Number of Constituent Statements
5.3.3 Based Upon their Role
Branching Statements

5.4.1 Selection Statements

54.2 if Statement

54.3 it-else Statement

54.4 Nested if Statement

545 Nested if-else Statement

5.4.6 switch Statement

54.7 Jump Statements

5.4.8 goto Statement

5.4.9 break Statement

5.4.10 continue Statement

5.4.11 return Statement

Iteration Statements

55.1 Counter-Controlled Loops

5.5.2 for Statement

5.5.3 while Statement

5.5.4 do-while Statement

5.5.,5 Sentinel-Controlled Loops

5.5.6 Nested Loops

5.5.7 Semantics of break and continue Statements
Summary

Exercise Questions

Conceptual Questions and Answers

Code Snippets

Multiple-choice Questions

Outputs and Explanations to Code Snippets
Answers to Multiple-choice Questions
Programming Exercises

Test Yourself

Part-1ll Arrays, Pointers and Strings

6 Arrays and Pointers

6.1
6.2
6.3

Introduction

Arrays

Single-dimensional Arrays

6.3.1 Declaration of a Single-dimensional Array
6.3.2 Usage of Single-dimensional Array

Contents xv

5.1

52

52

52

53

54

5.6

59
5.10
5.10
5.12
5.14
5.15
5.17
5.21
5.21
5.22
5.23
5.23
5.24
5.24
5.24
5.27
5.29
5.31
5.33
5.33
5.36
5.36
5.36
548
5.67
5.59
5.68
5.68
5.79

6.1

6.3

6.4
6.4
6.6
6.6
6.9

xvi Contents

6.4

6.5

6.6
6.7
6.8

6.9

6.10
6.11
6.12
6.13

6.14

6.15

6.3.3 Memory Representation of Single-dimensional Array
6.3.4 Operations on a Single-dimensional Array
Pointers

6.4.1 Operations on Pointers

6.4.2 Arithmetic Operations (Pointer Arithmetic)
6.4.3 Relational (Comparison) Operations

6.4.4 Illegal Pointer Operations

void Pointer

6.5.1 Operations on void Pointer

Null Pointer

Relationship Between Arrays and Pointers
Scaling up the Concept

6.8.1 Array of Arrays (Multi-dimensional Arrays)
6.8.2 Two-dimensional Arrays

6.8.3 Three-dimensional Arrays

Array of Pointers

Pointer to a Pointer

Pointer to an Array

Advantages and Limitations of Arrays

Searching

6.13.1 Binary Search

Sorting

6.14.1 Selection Sort

6.14.2 Bubble Sort

6.14.3 Insertion Sort

6.14.4 Merge Sort

6.14.5 Quick Sort

6.14.6 Shell Sort

6.14.7 Radix Sort

Summary

Exercise Questions

Conceptual Questions and Answers

Code Snippets

Multiple-choice Questions

Outputs and Explanations to Code Snippets

Answers to Multiple-choice Questions

Programming Exercises

Test Yourself

7 Strings and Character Arrays

7.1
7.2
7.3
74

Introduction

Strings

Character Arrays

Importance of Terminating Null Character

6.10
6.11
6.12
6.14
6.17
6.19
6.20
6.20
6.20
6.21
6.22
6.23
6.23
6.23
6.28
6.29
6.30
6.30
6.31
6.31
6.34
6.38
6.38
6.41
6.45
6.47
6.51
6.54
6.57
6.57
6.58
6.58
6.63
6.70
6.72
6.83
6.83
6.100

7.1

7.2
7.2
7.4
7.5

7.5

7.6

7.7
7.8

String Library Functions

7.5.1 strlen Function

7.5.2 strepy Function

7.5.3 strcat Function

7.5.4 stremp Function

7.5.5 strempi Function

7.5.6 strrev Function

7.5.7 strlwr Function

7.5.8 strupr Function

759 strset Function

7.5.10 strchr Function

7.5.11 strrchr Function

7.5.12 strstr Function

7.5.13 stencpy Function

7.5.14 strncat Function

7.5.15 strncmp Function

7.5.16 strncmpi Function

7.5.17 strnset Function

List of Strings

7.6.1 Array of Strings

7.6.2 Array of Character Pointers
Command Line Arguments
Summary

Exercise Questions

Conceptual Questions and Answers
Code Snippets

Multiple-choice Questions

Outputs and Explanations to Code Snippets
Answers to Multiple-choice Questions
Programming Exercises

Test Yourself

Part-1V Functions

8 Functions

8.1
8.2
8.3

8.4

8.5

Introduction

Functions

Classification of Functions

8.3.1 Based Upon who Develops the Function
User-defined Functions

8.4.1 Function Declaration

8.4.2 Function Definition

8.4.3 Function Invocation/Call/Use

Function with Inputs and Outputs

8.5.1 DPassing Arguments by Value

Contents

Xvii

7.7

7.8

7.8

7.9
7.10
7.11
7.13
7.13
7.14
7.15
7.16
717
7.18
7.19
7.20
7.22
7.23
7.24
7.24
7.25
7.26
7.28
7.30
7.31
7.31
7.36
7.43
7.45
7.55
7.56
7.69

8.1

8.3

8.4
8.4
8.5
8.5
8.5
8.6
8.9
8.10
8.19
8.19

Xviii

8.6

8.7

8.8

Contents

8.5.2 Passing Arguments by Address/Reference

8.5.3 Returning More Than One Value Indirectly
8.5.4 Passing Arrays to Functions

8.5.5 Recursion

8.5.6 Pointers to Functions

8.5.7 Array of Function Pointers

8.5.8 DPassing Function to a Function as an Argument
Library Functions

8.6.1 Declaration of Library Functions/Role of Header Files
8.6.2 Use of Library Functions

Based upon the Number of Arguments a Function Accepts
8.7.1 Fixed Argument Functions

8.7.2 Variable Argument Functions

Summary

Exercise Questions

Conceptual Questions and Answers

Code Snippets

Multiple-choice Questions

Outputs and Explanations to Code Snippets

Answers to Multiple-choice Questions

Programming Exercises

Test Yourself

Part-V Structures and Unions

9 Structures and Unions

9.1
9.2

9.3

9.4
9.5
9.6

9.7
9.8
9.9

Introduction

Structures

9.2.1 Defining a Structure

9.2.2 Declaring Structure Objects
9.2.3 Operations on Structures
Pointers to Structures

9.3.1 Declaring Pointer to a Structure

9.3.2 Accessing Structure Members Via a Pointer to a Structure

Array of Structures
Structures within a Structure (Nested Structures)
Functions and Structures

9.6.1 Passing Each Member of a Structure Object as a Separate Argument

9.6.2 Passing a Structure Object by Value

9.6.3 Passing a Structure Object by Address/Reference
typedef and Structures

Unions

Practical Application of Unions

9.9.1 Calling DOS and BIOS Functions

9.9.2 Interrupt Programming

8.20
8.21
8.21
8.28
8.38
8.41
8.43
8.43
8.43
8.44
8.45
8.45
8.46
8.48
8.49
8.49
8.58
8.66
8.68
8.74
8.74
8.83

9.1

9.3

9.4

9.4

9.4

9.9
9.13
9.24
9.24
9.25
9.26
9.29
9.31
9.32
9.33
9.34
9.36
9.38
9.41
9.42
9.45

9.10
9.11
9.12

Enumerations

Bit-fields

Summary

Exercise Questions

Conceptual Questions and Answers
Code Snippets

Multiple-choice Questions

Outputs and Explanations to Code Snippets
Answers to Multiple-choice Questions
Programming Exercises

Test Yourself

10 Storage Class and Preprocessor Directives

10.1
10.2

10.3
10.4
10.5

10.6

Index

Storage Duration/Lifetime of an Object
Storage Classes

10.2.1 The auto Storage Class

10.2.2 The register Storage Class

10.2.3 The static Storage Class

10.2.4 The extern Storage Class

10.2.5 The typedef Storage Class

The C Preprocessor

Translators

Phases of Translation

10.5.1 Trigraph Replacement

10.5.2 Line Splicing

10.5.3 Tokenization

10.5.4 Preprocessor Directive Handling
Summary

Exercise Questions

Conceptual Questions and Answers

Code Snippets

Multiple-choice Questions

Outputs and Explanations to Code Snippets
Answers to Multiple-choice Questions
Programming Exercises

Test Yourself

Contents

Xix

9.50
9.56
9.60
9.61
9.61
9.71
9.80
9.81
9.87
9.87
9.96

10.1

10.2
10.3
10.4
10.6
10.6
10.8
10.9
10.10
10.10
10.11
10.12
10.13
10.13
10.14
10.34
10.35
10.35
10.42
10.50
10.52
10.59
10.59
10.62

11

This page is intentionally left blank

Preface

“Dreams transform into thoughts, thoughts into actions and actions into reality”
—A.P.]J. Abdul Kalam

“Until you try, you don’t know what you can’t do”
—Henry James

Why and How I Wrote this Book

I ventured into the field of C programming as a young novice undergraduate like you about
fifteen years back. At that time I had a little programming experience with BASIC, PASCAL
and FORTRAN languages. I had heard about the enormous power of C programming lan-
guage and was fascinated about it. I learnt and practiced it for about five years, and then
fortunately had the opportunity to teach it to young engineering students at PEC University
of Technology (formerly Punjab Engineering College), Chandigarh. This new assignment
changed my perspective a bit; however, my learning and understanding about the language
continued to evolve. Gradually, I developed a flair for solving problems faced by students in
conceiving and understanding the intricacies of the language. Years of teaching have given me
a clear idea about how a student perceives, conceives and understands the language. During
these years, I have observed the deficiencies and the weaknesses in the literature available on
C language. It adopts a unique and well-tested practical approach towards learning C lan-
guage. I am sure that this book will help you in gaining proficiency in C programming. Happy
Learning and All the Best!

C Programming Language

C is a general-purpose, block-structured, procedural, case-sensitive, free-flow, portable, pow-
erful high-level programming language. The language is so powerful that UNIX, one of the
most accepted operating systems, is written in it. It is said that programming languages are
‘born’, “age” and eventually ‘die’. However, C programming language has only matured from
the time it was born. It holds the same relevance today, as it held when it was developed by
Dennis Ritchie at the Bell Telephone Laboratories in 1972.

Programming in C is introduced into undergraduate professional courses as a first pro-
gramming course. The course intends to make the students well conversant with the syntax of
C programming language and also focuses on the development of logic and problem-solving
abilities in the students. The importance of this course can be clearly fathomed from the fact
that the knowledge of C programming language is maintained as a pre-requisite for place-
ments in almost all reputed software companies. Good understanding of C language also
creates a strong foundation for learning other programming languages like C++, Java, etc.

About the Book

The book Computer Fundamentals and Programming in C adopts a unique and well-tested practi-
cal approach towards learning C programming language. The book covers the concepts in a

xXxii Preface

lucid manner for the benefit of novice as well as amateur programmers who are looking for
a comprehensive source to increase their skill in C programming. Though the book does not
assume prior knowledge in the subject; a basic awareness of the working of computers will
make the going easier.

Structure of the Book

The book is structured in ten chapters that are divided into exclusive parts to enable facile
understanding of the underlying ideas that enable programming in C.

Part I encapsulates the Fundamentals of Computer Programming in the first two chap-
ters. Chapter 1 traces the history and evolution of the computer and discusses the concept of
input-process—output and the characteristics of the computer. It also reviews the classification
of digital computers and the application of computers in different domain areas. Chapter 2
deals at length with data representation and the fundamentals of programming. It explains
how denary, binary, octal and hexadecimal numbers can be inter-converted from one sys-
tem to another, and delineates the concept of logic gates and their application to computer
programming.

Part II, spanning Chapters 3-5, expounds on the Basics of C Programming. Chapter 3
provides an introduction to the C language along with a chronological listing of its various
standards. It starts with a presentation of the common programming vocabulary such as
character set, identifiers, keywords, variables, constants and data types before proceeding to
expound on the techniques of writing, compiling and executing simple C programs. Chapter 4
describes operators and the ways of creating expressions using them. A detailed classification
of operators as arithmetic, relational, logical, and bitwise, is presented. It also reveals how
expressions are evaluated and gives an insight into the intricacies involved in this evaluation
process. Statements that form the smallest independent unit within a C program are discussed
in Chapter 5. The classification of statements into executable and non-executable statements,
simple statements and compound statements, branching statements and iteration statements
is presented in detail.

Chapters 6 and 7 make up Part III of the book and delve into Arrays, Pointers and Strings.
Chapter 6 is devoted to derived data type arrays and pointers. It talks about the inter-
relationship between arrays and pointers. Chapter 7 introduces strings and character arrays.
Various string operations using library functions and user-defined functions are presented.

Part IV of the book comprises of Chapter 8, dedicated exclusively on Functions. Functions
help in modularizing the program and the code reuse. The chapter sheds light on the impor-
tance of functions and expounds on the concept of recursion in a unique manner.

Part V, the concluding part, focuses on Structures and Unions. Chapter 9 explicates the defi-
nition of new data types using structures, unions and enums. The chapter covers bit-fields and
interrupt programming, the practical application of unions. Chapter 10 analyzes the transla-
tors and focuses on a translator known as the preprocessor. Various directives used to control
preprocessors are described in detail.

Salient Features and Strengths of the Book
The salient features and strengths of the book are:

1. Comprehensive coverage of C programming language. The content of each chapter is
clear, lucid and self-explanatory.

Preface xxiii

2. The theory is reiterated through conceptual questions and their elucidative explanatory
answers. The book has an extensive collection of nearly 1000 unique, relevant and con-
ceptual questions. These questions have either been asked by the students during the
courses on C programming or have been developed to cover each and every concept of
the C programming language.

3. The concepts are explained with the help of programming examples. One of the unique
features of the book is the presentation of programming examples with the help of
remarks.

4. Simultaneous discussion on the behavior of a program with Borland Turbo C 3.0,
Borland Turbo C 4.5 and MS-VC++ 6.0 compilers.

5. Unique and in-depth discussion on structure padding and recursion.

Typographical Conventions

The book tries to keep a consistent style in the use of special or technical terms. The normal text
is written in Palatino Linotype regular typeface, whereas the C syntactic terms like reserved
words, etc. are written in Agency FB regular typeface. The conceptual questions presented at the end
of each chapter are written in Palatino Linotype italic typeface for normal text and Agency FB regular
typeface for C syntactic terms. The answers to these conceptual questions appear at the same
place in Palatino Linotype regular typeface for normal text and Agency FB regular typeface for C
syntactic terms. The outputs to the code snippets and answers to multiple-choice questions
are present at the end of each chapter using the same typographical conventions. The first
occurrence of each technical term is in bold. The references to the topics present in the same
chapter are given by providing footnotes.

Web Resources
All the source codes, online chapters and resources are available at our website.

Acknowledgements

I am grateful to Dr S. C. Gupta, Prof. S. K. Wasan and Dr Mukul Sinha for encouraging me to
write a book. I thank them for their valuable advice and for their encouragement to dissemi-
nate information. I also thank them for continually inspiring me to write a good book.

I thank Mr Neeraj Saxena, Ms Renu Saxena and Mr Rajendra for their extensive help in
clicking the photographs in this book.

My special thanks go to all my students, Amit Jain in particular, who have always been
eager to inform me about the expectations of the students about the book. Their suggestions
and feedback have helped me to write the book in a student-friendly manner.

Thanks to the team of Pearson Education for their extensive support. The book in its pres-
ent form is a result of the long discussions and the brainstorming sessions with Sachin. I am
grateful to Sachin for his ideas, suggestions and excellent support provided to me during the
writing of this book.

I express my regards and love to my mother Urmila, and my father Amar Chand. Being their
child makes me feel special, and I thank them both for guiding me through life. Through this
book, I carry forward the legacy of book writing from my maternal grandfather late Mr C. S. Jain.
I express my respect and thanks to my father-in-law Gopal Krishan for his motivation and
cooperation, and for taking care of matters while I was busy writing the book. My thanks are
due, in memory of my mother-in-law Pushpa who has always loved and supported me.

XXiv Preface

Thanks to my loving husband, Ajay, for standing by me in the difficult times during the
course of writing this book. He is a bagful of innovative ideas and has contributed creatively
to the writing of this book. My special thanks to my lovely and beautiful children, Anirudh
and Ashima, who brilliantly contributed towards the creation and editing of this book. They
are my greatest source of inspiration and motivation.

Since this is not the first book on this topic, I thank the authors of other books on similar
topic, whose books have been a source of ideas for me.

I thank the Almighty without whose grace it would have been impossible for me to accom-
plish this task.

Anita Goel

A dream is visualized by a pair of eyes; however, many pairs of hands join together and work
hard towards its realization. Throughout the project, I received the much-needed support at
all fronts from various people. The list is so exhaustive that I may not be able to enumerate all
the names. I express my heartfelt thanks to all who helped me at any point of time during the
writing of this book. I would like to specially thank the following persons who have helped
me in different ways.

My sincere thanks to Dr Manoj Dutta, Director, PEC University of Technology; Dr Sanjeev
Sofat, Professor and Head, Computer Science and Engineering Department; Dr Vijay Gupta,
Vice-Chancellor, Lovely Professional University, Ex-Director, Punjab Engineering College;
my colleagues Divya and Arvind Kakria and my friends Praveen Grewal and Naveen
Aggarwal for their unabated support and inspiration.

My students provided helpful insights while working on the drafts of the manuscript:
Mohit Virmani, Deepti Sabani, Akansha Bansal, Subhangi Harsha, Ankit Anand, Amandeep
Jakhu and Shefali Saroha. I thank Mohit for his thoughtful comments and dedicated efforts in
proof reading. His reviews have considerably improved this book.

Iam obliged to Thomas Mathew Rajesh, M. E. Sethurajan, Jennifer Sargunar, C. Purushothaman,
Munish Modi and other members of the editorial and production teams of Pearson Education
for their hard work and vast patience. I am especially thankful to Jennifer, who has taken per-
sonal interest towards the betterment of the script.

Last but not the least, I express my heartfelt gratitude to my parents Sh. T.L. Mittal and Smt.
Prem Lata, and my brother Hemraj Mittal and his wife Sabina for their moral support and
patience throughout the period of writing the book. My little nephew Jai Mittal was my inspi-
ration and played an important role in his own way towards the early completion of the book.

Ajay Mittal

PART - |

COMPUTER FUNDAMENTALS

This page is intentionally left blank

BASICS OF COMPUTER

Learning Objectives

In this chapter, you will learn about:

= Digital and analog computers
= Characteristics of computer

= History of computer

= Generations of computer

= Classification of computer

= The computer system

= Central processing unit

= Memory unit

= Instruction format

= |nstruction set

= Instruction cycle

= Microprocessor

= Interconnecting the units of a computer
= Performance of a computer

= Inside a computer cabinet

= Application of computers

1.4 Computer Fundamentals

1.1 Introduction

Nowadays, computers are an integral part of our lives. They are used for the reservation of
tickets for airplanes and railways, payment of telephone and electricity bills, deposit and with-
drawal of money from banks, processing of business data, forecasting of weather conditions,
diagnosis of diseases, searching for information on the Internet, etc. Computers are also used
extensively in schools, universities, organizations, music industry, movie industry, scientific
research, law firms, fashion industry, etc.

The term computer is derived from the word compute. The word compute means to calculate.
A computer is an electronic machine that accepts data from the user, processes the data by per-
forming calculations and operations on it, and generates the desired output results. Computer
performs both simple and complex operations, with speed and accuracy.

This chapter discusses the history and evolution of computer, the concept of input-process-
output and the characteristics of computer. This chapter also discusses the classification of
digital computers based on their size and type, and the application of computer in different
domain areas.

1.2 Digital and Analog Computers

A digital computer uses distinct values to represent the data internally. All information are rep-
resented using the digits Os and 1s. The computers that we use at our homes and offices are
digital computers.

Analog computer is another kind of a computer that represents data as variable across a con-
tinuous range of values. The earliest computers were analog computers. Analog computers
are used for measuring of parameters that vary continuously in real time, such as temperature,
pressure and voltage. Analog computers may be more flexible but generally less precise than
digital computers. Slide rule is an example of an analog computer.

This book deals only with the digital computer and uses the term computer for them.

1.3 Characteristics of Computer

Speed, accuracy, diligence, storage capability and versatility are some of the key characteris-
tics of a computer. A brief overview of these characteristics are:

1. Speed: The computer can process data very fast, at the rate of millions of instructions
per second. Some calculations that would have taken hours and days to complete oth-
erwise, can be completed in a few seconds using the computer. For example, calculation
and generation of salary slips of thousands of employees of an organization, weather
forecasting that requires analysis of a large amount of data related to temperature, pres-
sure and humidity of various places, etc.

2. Accuracy: Computer provides a high degree of accuracy. For example, the computer
can accurately give the result of division of any two numbers up to 10 decimal places.

3. Diligence: When used for a longer period of time, the computer does not get tired or
fatigued. It can perform long and complex calculations with the same speed and accu-
racy from the start till the end.

Basics of Computer 1.5

4. Storage Capability: Large volumes of data and information can be stored in the com-
puter and also retrieved whenever required. A limited amount of data can be stored,
temporarily, in the primary memory. Secondary storage devices like floppy disk and
compact disk can store a large amount of data permanently.

5. Versatility: Computer is versatile in nature. It can perform different types of tasks with
the same ease. At one moment you can use the computer to prepare a letter document
and in the next moment you may play music or print a document.

Computers have several limitations too. Computer can only perform tasks that it has been
programmed to do. Computer cannot do any work without instructions from the user. It exe-
cutes instructions as specified by the user and does not take its own decisions.

1.4 History of Computer

Until the development of the first generation computers based
on vacuum tubes, there had been several developments in the
computing technology related to the mechanical computing
devices. The key developments that took place till the first
computer was developed are as follows:

1. Calculating Machines ABACUS was the first mechani-
cal calculating device for counting of large numbers.
The word ABACUS means calculating board. It con-
sists of bars in horizontal positions on which sets of T IR
beads are inserted. The horizontal bars have 10 beads B SN
each, representing units, tens, hundreds, etc. An abacus 3 e —
is shown in Figure 1.1

2. Napier’s Bones was a mechanical device built for the
purpose of multiplication in 1617 ap. by an English ~Figure 1.1 | Abacus
mathematician John Napier.

3. Slide Rule was developed by an English mathematician Edmund Gunter in the 16th
century. Using the slide rule, one could perform operations like addition, subtraction,
multiplication and division. It was used extensively till late 1970s. Figure 1.2 shows a
slide rule.

Figure 1.2 | Slide rule

1.6 Computer Fundamentals

4.

5.

Pascal’s Adding and Subtraction Machine was developed by Blaise Pascal. It could
add and subtract. The machine consisted of wheels, gears and cylinders.

Leibniz’s Multiplication and Dividing Machine was a mechanical device that could
both multiply and divide. The German philosopher and mathematician Gottfried Leibniz
built it around 1673.

Punch Card System was developed by Jacquard to control the power loom in 1801. He
invented the punched card reader that could recognize the presence of hole in the punched
card as binary one and the absence of the hole as binary zero. The 0s and 1s are the basis of
the modern digital computer. A punched card is shown in Figure 1.3.

Figure 1.3 | Punched card

7.

Babbage’s Analytical Engine An English man Charles Babbage built a mechanical
machine to do complex mathematical calculations, in the year 1823. The machine was
called as difference engine. Later, Charles Babbage and Lady Ada Lovelace developed
a general-purpose calculating machine, the analytical engine. Charles Babbage is also
called the father of computer.

Hollerith’s Punched Card Tabulating Machine was invented by Herman Hollerith. The
machine could read the information from a punched card and process it electronically.

The developments discussed above and several others not discussed here, resulted in the
development of the first computer in the 1940s.

1.5

Generations of Computer

The computer has evolved from a large-sized simple calculating machine to a smaller but
much more powerful machine. The evolution of computer to the current state is defined in
terms of the generations of computer. Each generation of computer is designed based on a
new technological development, resulting in better, cheaper and smaller computers that are
more powerful, faster and efficient than their predecessors. Currently, there are five genera-
tions of computer. In the following subsections, we will discuss the generations of computer
in terms of:

1.
2.
3.
4.

the technology used by them (hardware and software),

computing characteristics (speed, i.e., number of instructions executed per second),
physical appearance, and

their applications.

1.5.1 First Generation (1940 to 1956):
Using Vacuum Tubes
1. Hardware Technology: The first generation of computers

used vacuum tubes (Figure 1.4) for circuitry and magnetic
drums for memory. The input to the computer was through
punched cards and paper tapes. The output was displayed
as printouts.

2. Software Technology: The instructions were written in
machine language. Machine language uses Os and 1s for cod-
ing of the instructions. The first generation computers could
solve one problem at a time.

3. Computing Characteristics: The computation time was in
milliseconds.

4. Physical Appearance: These computers were enormous in
size and required a large room for installation.

5. Application: They were used for scientific applications as
they were the fastest computing device of their time.

6.

Basics of Computer 1.7

RCA

i

Figure 1.4 | Vacuum tube

Examples: UNIVersal Automatic Computer (UNIVAC), Electronic Numerical Integrator
And Calculator (ENIAC), and Electronic Discrete Variable Automatic Computer

(EDVAC).

The first generation computers used a large number of vacuum tubes and thus generated
a lot of heat. They consumed a great deal of electricity and were expensive to operate. The
machines were prone to frequent malfunctioning and required constant maintenance. Since
first generation computers used machine language, they were difficult to program.

1.5.2 Second Generation (1956 to 1963): Using Transistors

1. Hardware Technology: Transistors (Figure 1.5) replaced
the vacuum tubes of the first generation of comput-
ers. Transistors allowed computers to become smaller,
faster, cheaper, energy efficient and reliable. The second
generation computers used magnetic core technology for
primary memory. They used magnetic tapes and mag-
netic disks for secondary storage. The input was still
through punched cards and the output using print-
outs. They used the concept of a stored program, where
instructions were stored in the memory of computer.

2. Software Technology: The instructions were written
using the assembly language. Assembly language uses mne-
monics like ADD for addition and SUB for subtraction for
coding of the instructions. It is easier to write instructions
in assembly language, as compared to writing instruc-
tions in machine language. High-level programming lan-
guages, such as early versions of COBOL and FORTRAN
were also developed during this period.

Figure 1.5 | Transistors

1.8 Computer Fundamentals

®

6.

Computing Characteristics: The computation time was in microseconds.

Physical Appearance: Transistors are smaller in size compared to vacuum tubes, thus,
the size of the computer was also reduced.

Application: The cost of commercial production of these computers was very high,
though less than the first generation computers. The transistors had to be assembled
manually in second generation computers.

Examples: PDP-8, IBM 1401 and CDC 1604.

Second generation computers generated a lot of heat but much less than the first generation
computers. They required less maintenance than the first generation computers.

1.5.3 Third Generation (1964 to 1971): Using Integrated Circuits

1.

®

5.

6.

Hardware Technology: The third generation computers
used the Integrated Circuit (IC) chips. Figure 1.6 shows IC
chips. In an IC chip, multiple transistors are placed on a
silicon chip. Silicon is a type of semiconductor. The use
of IC chip increased the speed and the efficiency of com-
puter, manifold. The keyboard and monitor were used
to interact with the third generation computer, instead
of the punched card and printouts.

Software Technology: The keyboard and the monitor
were interfaced through the operating system. Operating
system allowed different applications to run at the same time. High-level languages were
used extensively for programming, instead of machine language and assembly language.
Computing Characteristics: The computation time was in nanoseconds.

Physical Appearance: The size of these computers was quite small compared to the
second generation computers.

Application: Computers became accessible to mass audience. Computers were pro-
duced commercially, and were smaller and cheaper than their predecessors.
Examples: IBM 370, PDP 11.

Figure 1.6 | IC chips

The third generation computers used less power and generated less heat than the second genera-
tion computers. The cost of the computer reduced significantly, as individual components of the
computer were not required to be assembled manually. The maintenance cost of the computers
was also less compared to their predecessors.

1.5.4 Fourth Generation (1971 to present): Using Microprocessors

1.

Hardware Technology: They use the Large Scale Integration (LSI) and the Very Large Scale
Integration (VLSI) technology. Thousands of transistors are integrated on a small silicon
chip using LSI technology. VLSI allows hundreds of thousands of components to be
integrated in a small chip. This era is marked by the development of microprocessor.
Microprocessor is a chip containing millions of transistors and components, and, designed
using LSI'and VLSI technology. A microprocessor chip is shown in Figure 1.7. This genera-
tion of computers gave rise to Personal Computer (PC). Semiconductor memory replaced
the earlier magnetic core memory, resulting in fast random access to memory. Secondary
storage device like magnetic disks became smaller in physical size and larger in capacity.

Basics of Computer 1.9

The linking of computers is another key development
of this era. The computers were linked to form net-
works that led to the emergence of the Internet.
This generation also saw the development of point-
ing devices like mouse, and handheld devices.

2. Software Technology: Several new operating sys-

tems like the MS-DOS and MS-Windows developed

during this time. This generation of computers sup-

ported Graphical User Interface (GUI'). GUI is a user-

friendly interface that allows user to interact with the

computer via menus and icons. High-level program-

ming languages are used for the writing of programs.

Computing Characteristics: The computation time is in picoseconds.

4. Physical Appearance: They are smaller than the computers of the previous generation.
Some can even fit into the palm of the hand.

5. Application: They became widely available for commercial purposes. Personal com-
puters became available to the home user.

6. Examples: The Intel 4004 chip was the first microprocessor. The components of the com-
puter like Central Processing Unit (CPU) and memory were located on a single chip. In 1981,
IBM introduced the first computer for home use. In 1984, Apple introduced the Macintosh.

Figure 1.7 | Microprocessors

®

The microprocessor has resulted in the fourth generation computers being smaller and cheaper
than their predecessors. The fourth generation computers are also portable and more reliable.
They generate much lesser heat and require less maintenance compared to their predecessors.
GUI and pointing devices facilitate easy use and learning on the computer. Networking has
resulted in resource sharing and communication among different computers.

1.5.5 Fifth Generation (Present and Next): Using Artificial Intelligence

The goal of fifth generation computing is to develop computers that are capable of learn-
ing and self-organization. The fifth generation computers use Super Large Scale Integrated
(SLSI) chips that are able to store millions of components on a single chip. These comput-
ers have large memory requirements.

This generation of computers uses parallel processing that allows several instructions to be
executed in parallel, instead of serial execution. Parallel processing results in faster processing
speed. The Intel dual-core microprocessor uses parallel processing.

The fifth generation computers are based on Artificial Intelligence (Al). They try to simulate
the human way of thinking and reasoning. Artificial Intelligence includes areas like Expert
System (ES), Natural Language Processing (NLP), speech recognition, voice recognition,
robotics, etc.

The various generations of the computer in terms of technology and other features is tabu-
lated at the end of this chapter.

1.6 Classification of Computer

The digital computers that are available nowadays vary in their sizes and types. The com-
puters are broadly classified into four categories (Figure 1.8) based on their size and type:
(1) Microcomputers, (2) Minicomputers, (3) Mainframe computers, and (4) Supercomputer.

1.10 Computer Fundamentals

Fast Expensive Complex Large

ﬁ

Supercomputers

*

Mainframe Computers
T

Minicomputers

*

Microcomputers

!

Slow Cheap Simple Small

Figure 1.8 | Classification of computers based on size and type

1.6.1 Microcomputers

Microcomputers are small, low-cost and single-user digital computer. They consist of CPU,
input unit, output unit, storage unit and the software. Although microcomputers are stand-
alone machines, they can be connected together to create a network of computers that can
serve more than one user. IBM PC based on Pentium microprocessor and Apple Macintosh
are some examples of microcomputers. Microcomputers include desktop computers, note-
book computers or laptop, tablet computer, handheld computer, smart phones and netbook,
as shown in Figure 1.9.

1. Desktop Computer or Personal Computer (PC) is the most common type of microcom-
puter. It is a stand-alone machine that can be placed on the desk. Externally, it consists
of three units—keyboard, monitor, and a system unit containing the CPU, memory,
hard disk drive, etc. It is not very expensive and is suited to the needs of a single user at
home, small business units, and organizations. Apple, Microsoft, HP, Dell and Lenovo
are some of the PC manufacturers.

2. Notebook Computers or Laptop resemble a notebook. They are portable and have all
the features of a desktop computer. The advantage of the laptop is that it is small in size
(can be put inside a briefcase), can be carried anywhere, has a battery backup and has
all the functionality of the desktop. Laptops can be placed on the lap while working
(hence the name). Laptops are costlier than the desktop machines.

3. Netbook These are smaller notebooks optimized for low weight and low cost, and are
designed for accessing web-based applications. Starting with the earliest netbook in

Basics of Computer 1.11

PC Laptop Netbook

Tablet PDA Smart Phone

Figure 1.9 | Microcomputers

late 2007, they have gained significant popularity now. Netbooks deliver the perfor-
mance needed to enjoy popular activities like streaming videos or music, emailing, Web
surfing or instant messaging. The word netbook was created as a blend of Internet and
notebook.

4. Tablet Computer has features of the notebook computer but it can accept input from a
stylus or a pen instead of the keyboard or mouse. It is a portable computer. Tablet com-
puter are the new kind of PCs.

5. Handheld Computer or Personal Digital Assistant (PDA) is a small computer that can
be held on the top of the palm. It is small in size. Instead of the keyboard, PDA uses a
pen or a stylus for input. PDAs do not have a disk drive. They have a limited memory
and are less powerful. PDAs can be connected to the Internet via a wireless connection.
Casio and Apple are some of the manufacturers of PDA. Over the last few years, PDAs
have merged into mobile phones to create smart phones.

6. Smart Phones are cellular phones that function both as a phone and as a small PC. They
may use a stylus or a pen, or may have a small keyboard. They can be connected to the
Internet wirelessly. They are used to access the electronic-mail, download music, play
games, etc. Blackberry, Apple, HTC, Nokia and LG are some of the manufacturers of
smart phones.

1.12 Computer Fundamentals

1.6.2 Minicomputers

Minicomputers (Figure 1.10) are digital computers, gener-
ally used in multi-user systems. They have high processing
speed and high storage capacity than the microcomputers.
Minicomputers can support 4-200 users simultaneously.
The users can access the minicomputer through their PCs
or terminal. They are used for real-time applications in
industries, research centers, etc. PDP 11, IBM (8000 series)
are some of the widely used minicomputers.

1.6.3 Mainframe Computers

Mainframe computers (Figure 1.11) are multi-user, multi-
programming and high performance computers. They
operate at a very high speed, have very large storage capac-
ity and can handle the workload of many users. Mainframe
computers are large and powerful systems generally used
in centralized databases. The user accesses the mainframe
computer via a terminal that may be a dumb terminal, an
intelligent terminal or a PC. A dumb terminal cannot store
data or do processing of its own. It has the input and output
device only. An intelligent terminal has the input and output
device, can do processing, but, cannot store data of its own.
The dumb and the intelligent terminal use the processing
power and the storage facility of the mainframe computer.
Mainframe computers are used in organizations like banks
or companies, where many people require frequent access
to the same data. Some examples of mainframes are CDC
6600 and IBM ES000 series.

1.6.4 Supercomputers

Supercomputers (Figure 1.12) are the fastest and the most Figure I.11 | Mainframe computer
expensive machines. They have high processing speed com-

pared to other computers. The speed of a supercomputer is generally measured in FLOPS
(FLoating point Operations Per Second). Some of the faster supercomputers can perform tril-
lions of calculations per second. Supercomputers are built by interconnecting thousands of
processors that can work in parallel.

Supercomputers are used for highly calculation-intensive tasks, such as, weather fore-
casting, climate research (global warming), molecular research, biological research, nuclear
research and aircraft design. They are also used in major universities, military agencies and
scientific research laboratories. Some examples of supercomputers are IBM Roadrunner,
IBM Blue gene and Intel ASCI red. PARAM is a series of supercomputer assembled in India
by C-DAC (Center for Development of Advanced Computing), in Pune. PARAM Padma
is the latest machine in this series. The peak computing power of PARAM Padma is 1 Tera
FLOP (TFLOP).

Basics of Computer 1.13

Figure 1.12 | Supercomputer

1.7 The Computer System

Computer is an electronic device that accepts data as input, processes the input data by per-
forming mathematical and logical operations on it, and gives the desired output. The com-
puter system consists of four parts: (1) Hardware, (2) Software, (3) Data, and (4) Users. The
parts of computer system are shown in Figure 1.13.

1. Hardware consists of the mechanical parts that make up the computer as a machine.
The hardware consists of physical devices of the computer. The devices are required
for input, output, storage and processing of the data. Keyboard, monitor, hard disk
drive, floppy disk drive, printer, processor and motherboard are some of the hardware
devices.

2. Software is a set of instructions that tells the computer about the tasks to be performed
and how these tasks are to be performed. Program is a set of instructions, written in a
language understood by the computer, to perform a specific task. A set of programs
and documents are collectively called software. The hardware of the computer system
cannot perform any task on its own. The hardware needs to be instructed about the task

1.14

Computer Fundamentals

Software

Hardware

Figure 1.13 | Parts of computer system

1.7.1

to be performed. Software instructs the computer about the task to be performed. The
hardware carries out these tasks. Different software can be loaded on the same hard-
ware to perform different kinds of tasks.

Data are isolated values or raw facts, which by themselves have no much significance.
For example, the data like 29, January, and 1994 just represent values. The data is pro-
vided as input to the computer, which is processed to generate some meaningful infor-
mation. For example, 29, January and 1994 are processed by the computer to give the
date of birth of a person.

Users are people who write computer programs or interact with the computer. They
are also known as skinware, liveware, humanware or peopleware. Programmers, data entry
operators, system analyst and computer hardware engineers fall into this category.

The Input-Process-Output Concept

A computer is an electronic device that (1) accepts data,
(2) processes data, (3) generates output, and (4) stores
data. The concept of generating output information from Mm
the input data is also referred to as input-process-output

concept.
The input-process-output concept of the computer is explained as follows:

1.

2.

Input: The computer accepts input data from the user via an input device like key-
board. The input data can be characters, word, text, sound, images, document, etc.
Process: The computer processes the input data. For this, it performs some actions on
the data by using the instructions or program given by the user of the data. The action
could be an arithmetic or logic calculation, editing, modifying a document, etc. During
processing, the data, instructions and the output are stored temporarily in the com-
puter’s main memory.

Basics of Computer 1.15

3. Output: The output is the result generated after the processing of data. The output may
be in the form of text, sound, image, document, etc. The computer may display the out-
put on a monitor, send output to the printer for printing, play the output, etc.

4. Storage: The input data, instructions and output are stored permanently in the second-
ary storage devices like disk or tape. The stored data can be retrieved later, whenever
needed.

1.7.2 Components of Computer Hardware
The computer system hardware comprises of three main components:

1. Input/Output (I/O) Unit,
2. Central Processing Unit (CPU), and
3. Memory Unit.

The I/O unit consists of the input unit and the output unit. CPU performs calculations and
processing on the input data, to generate the output. The memory unit is used to store the
data, the instructions and the output information. Figure 1.14 illustrates the typical interaction
among the different components of the computer.

]
|]

Figure 1.14 | The computer system interaction

1. Input/Output Unit: The user interacts with the computer via the I/O unit. The Input
unit accepts data from the user and the Output unit provides the processed data i.e. the
information to the user. The Input unit converts the data that it accepts from the user,
into a form that is understandable by the computer. Similarly, the Output unit provides
the output in a form that is understandable by the user. The input is provided to the
computer using input devices like keyboard, trackball and mouse. Some of the com-
monly used output devices are monitor and printer.

2. Central Processing Unit: CPU controls, coordinates and supervises the operations of the
computer. It is responsible for processing of the input data. CPU consists of Arithmetic
Logic Unit (ALU) and Control Unit (CU).

1.16 Computer Fundamentals

a. ALU performs all the arithmetic and logic operations on the input data.

b. CU controls the overall operations of the computer i.e. it checks the sequence of
execution of instructions, and, controls and coordinates the overall functioning
of the units of computer.

Additionally, CPU also has a set of registers for temporary storage of data, instruc-
tions, addresses and intermediate results of calculation.

3. Memory Unit: Memory unit stores the data, instructions, intermediate results and out-
put, temporarily, during the processing of data. This memory is also called the main mem-
ory or primary memory of the computer. The input data that is to be processed is brought
into the main memory before processing. The instructions required for processing of
data and any intermediate results are also stored in the main memory. The output is
stored in memory before being transferred to the output device. CPU can work with the
information stored in the main memory. Another kind of storage unit is also referred
to as the secondary memory of the computer. The data, the programs and the output are
stored permanently in the storage unit of the computer. Magnetic disks, optical disks and
magnetic tapes are examples of secondary memory.

1.8 Central Processing Unit

Central Processing Unit (CPU) or the processor is also often called the brain of computer. CPU
(Figure 1.15) consists of Arithmetic Logic Unit (ALU) and Control Unit (CU). In addition, CPU
also has a set of registers which are temporary storage areas for holding data, and instruc-
tions. ALU performs the arithmetic and logic operations on the data that is made available to
it. CU is responsible for organizing the processing of data and instructions. CU controls and
coordinates the activity of the other units of computer. CPU uses the registers to store the data,
instructions during processing.

CPU executes the stored program instructions, i.e. instructions and data are stored in memory
before execution. For processing, CPU gets data and instructions from the memory. It interprets

Central processing unit

Control Arlthrpetlc
. logic
unit A
unit
Registers

Figure 1.15 | CPU

Basics of Computer 1.17

the program instructions and performs the arithmetic and logic operations required for the
processing of data. Then, it sends the processed data or result to the memory. CPU also acts as
an administrator and is responsible for supervising operations of other parts of the computer.

The CPU is fabricated as a single Integrated Circuit (IC) chip, and is also known as the micro-
processor. The microprocessor is plugged into the motherboard of the computer (Motherboard
is a circuit board that has electronic circuit etched on it and connects the microprocessor with
the other hardware components).

1.8.1 Arithmetic Logic Unit

1. ALU consists of two units—arithmetic unit and logic unit.

2. The arithmetic unit performs arithmetic operations on the data that is made available
to it. Some of the arithmetic operations supported by the arithmetic unit are—addition,
subtraction, multiplication and division.

3. The logic unit of ALU is responsible for performing logic operations. Logic unit per-
forms comparisons of numbers, letters and special characters. Logic operations include
testing for greater than, less than or equal to condition.

4. ALU performs arithmetic and logic operations, and uses registers to hold the data that is
being processed.

1.8.2 Registers

1. Registers are high-speed storage areas within the CPU, but have the least storage capac-
ity. Registers are not referenced by their address, but are directly accessed and manipu-
lated by the CPU during instruction execution.

2. Registers store data, instructions, addresses and intermediate results of processing.
Registers are often referred to as the CPU’s working memory.

3. The data and instructions that require processing must be brought in the registers of
CPU before they can be processed. For example, if two numbers are to be added, both
numbers are brought in the registers, added and the result is also placed in a register.

4. Registers are used for different purposes, with each register serving a specific purpose.
Some of the important registers in CPU (Figure 1.16) are as follows:

PC

MAR ACC

Figure 1.16 | CPU registers

1.18 Computer Fundamentals

i. Accumulator (ACC) stores the result of arithmetic and logic operations.

ii. Instruction Register (IR) contains the current instruction most recently fetched.

iii. Program Counter (PC) contains the address of next instruction to be processed.

iv. Memory Address Register (MAR) contains the address of next location in the
memory to be accessed.

v. Memory Buffer Register (MBR) temporarily stores data from memory or the data to
be sent to memory.

vi. Data Register (DR) stores the operands and any other data.

5. The number of registers and the size of each (number of bits) register in a CPU helps to
determine the power and the speed of a CPU.

6. The overall number of registers can vary from about ten to many hundreds, depending
on the type and complexity of the processor.

7. The size of register, also called word size, indicates the amount of data with which the
computer can work at any given time. The bigger the size, the more quickly it can process
data. The size of a register may be 8, 16, 32 or 64 bits. For example, a 32-bit CPU is one in
which each register is 32 bits wide and its CPU can manipulate 32 bits of data at a time.
Nowadays, PCs have 32-bit or 64-bit registers.

10. 32-bit processor and 64-bit processor are the terms used to refer to the size of the registers.
Other factors remaining the same, a 64-bit processor can process the data twice as fast as one
with 32-bit processor.

1.8.3 Control Unit

1. The control unit of a computer does not do any actual processing of data. It organizes
the processing of data and instructions. It acts as a supervisor and, controls and coordi-
nates the activity of the other units of computer.

2. CU coordinates the input and output devices of a computer. It directs the computer to
carry out stored program instructions by communicating with the ALU and the reg-
isters. CU uses the instructions in the Instruction Register (IR) to decide which circuit
needs to be activated. It also instructs the ALU to perform the arithmetic or logic opera-
tions. When a program is run, the Program Counter (PC) register keeps track of the
program instruction to be executed next.

3. CU tells when to fetch the data and instructions, what to do, where to store the results,
the sequencing of events during processing etc.

4. CU also holds the CPU’s Instruction Set, which is a list of all operations that the CPU
can perform.

The function of a (CU) can be considered synonymous with that of a conductor of an
orchestra. The conductor in an orchestra does not perform any work by itself but manages the
orchestra and ensures that the members of orchestra work in proper coordination.

1.9 Memory Unit

The memory unit consists of cache memory and primary memory. Primary memory or main
memory of the computer is used to store the data and instructions during execution of the
instructions. Random Access Memory (RAM) and Read Only Memory (ROM) are the primary

Basics of Computer 1.19

memory. In addition to the main memory, there is another kind of storage device known as
the secondary memory. Secondary memory is non-volatile and is used for permanent storage
of data and programs. A program or data that has to be executed is brought into the RAM
from the secondary memory.

1.9.1 Cache Memory

1. The data and instructions that are required during the processing of data are brought
from the secondary storage devices and stored in the RAM. For processing, it is required
that the data and instructions are accessed from the RAM and stored in the registers.
The time taken to move the data between RAM and CPU registers is large. This affects
the speed of processing of computer, and results in decreasing the performance of CPU.

2. Cache memory is a very high speed memory placed in between RAM and CPU. Cache
memory increases the speed of processing.

3. Cache memory is a storage buffer that stores the data that is used more often, temporar-
ily, and makes them available to CPU at a fast rate. During processing, CPU first checks
cache for the required data. If data is not found in cache, then it looks in the RAM for data.

4. To access the cache memory, CPU does not have to use the motherboard’s system bus
for data transfer. (The data transfer speed slows to the motherboard’s capability, when
data is passed through system bus. CPU can process data at a much faster rate by avoid-
ing the system bus.)

5. Cache memory is built into the processor, and may also be located next to it on a sepa-
rate chip between the CPU and RAM. Cache built into the CPU is faster than separate
cache, running at the speed of the microprocessor itself. However, separate cache is
roughly twice as fast as RAM.

6. The CPU has a built-in Level 1 (L1) cache and Level 2 (L2) cache, as shown in Figure 1.17.
In addition to the built-in L1 and L2 cache, some CPUs have a separate cache chip on
the motherboard. This cache on the motherboard is called Level 3 (L3) cache. Nowadays,
high-end processor comes with built-in L3 cache, like in Intel core i7. The L1, L2 and
L3 cache store the most recently run instructions, the next ones and the possible ones,
respectively. Typically, CPUs have cache size varying from 256KB (L1), 6 MB (L2), to
12MB (L3) cache.

7. Cache memory is very expensive, so it is smaller in size. Generally, computers have
cache memory of sizes 256 KB to 2 MB.

Figure 1.17 | lllustration of cache memory

1.20 Computer Fundamentals

1.9.2 Primary Memory

1.

2.

Primary memory is the main memory of computer. It is used to store data and instruc-
tions during the processing of data. Primary memory is semiconductor memory.
Primary memory is of two kinds—Random Access Memory (RAM) and Read Only Memory
(ROM).

RAM is volatile. It stores data when the computer is on. The information stored in
RAM gets erased when the computer is turned off. RAM provides temporary storage
for data and instructions.

ROM is non-volatile memory, but is a read only memory. The storage in ROM is perma-
nent in nature, and is used for storing standard processing programs that permanently
reside in the computer. ROM comes programmed by the manufacturer.

RAM stores data and instructions during the execution of instructions. The data and instruc-
tions that require processing are brought into the RAM from the storage devices like
hard disk. CPU accesses the data and the instructions from RAM, as it can access it at a
fast speed than the storage devices connected to the input and output unit (Figure 1.18).
The input data that is entered using the input unit is stored in RAM, to be made avail-
able during the processing of data. Similarly, the output data generated after process-
ing is stored in RAM before being sent to the output device. Any intermediate results
generated during the processing of program are stored in RAM.

RAM provides a limited storage capacity, due to its high cost.

Figure 1.18 | Interaction of CPU with memory

1.9.3 Secondary Memory

1.

o

The secondary memory stores data and instructions permanently. The information can
be stored in secondary memory for a long time (years), and is generally permanent in
nature unless erased by the user. It is a non-volatile memory.

It provides back-up storage for data and instructions. Hard disk drive, floppy drive and
optical disk drives are some examples of storage devices.

The data and instructions that are currently not being used by CPU, but may be required
later for processing, are stored in secondary memory.

Secondary memory has a high storage capacity than the primary memory.

Secondary memory is also cheaper than the primary memory.

Basics of Computer 1.21

6. It takes longer time to access the data and instructions stored in secondary memory than
in primary memory.
Magnetic tape drives, disk drives and optical disk drives are the different types of storage
devices.

1.10 Instruction Format

A computer program is a set of instructions that describe the steps to be performed for carry-
ing out a computational task. The program and the data, on which the program operates, are
stored in main memory, waiting to be processed by the processor. This is also called the stored
program concept.

An instruction is designed to perform a task and is an elementary operation that the pro-
cessor can accomplish. An instruction is divided into groups called fields. The common fields
of an instruction are—Operation (op) code and Operand
code (Figure 1.19). The remainder of the instruction fields
differs from one computer type to other. The operation
code represents action that the processor must execute.
It tells the processor what basic operations to perform.
The operand code defines the parameters of the action and
depends on the operation. It specifies the locations of the data or the operand on which the
operation is to be performed. It can be data or a memory address.

The number of bits in an instruction varies according to the type of data (could be between
8 and 32 bits). Figure 1.20 shows the instruction format for ADD command.

Operation code Operand code

Figure 1.19 | Instruction format

ADD op code 1%t operand address 2" gpperand address

Figure 1.20 | Instruction format for ADD command

I.11 Instruction Set

A processor has a set of instructions that it understands, called as instruction set. An instruc-
tion set or an instruction set architecture is a part of the computer architecture. It relates to pro-
gramming, instructions, registers, addressing modes, memory architecture, etc. An Instruction
Set is the set of all the basic operations that a processor can accomplish. Examples of some
instructions are shown in Figure 1.21. The instructions in the instruc-
tion set are the la.nguage. that a processor ur.lderstand.s. All programs LOAD R1, A
have to communicate with the processor using these instructions. An
instruction in the instruction set involves a series of logical opera-
tions (may be thousands) that are performed to complete each task.
The instruction set is embedded in the processor (hardwired), which
determines the machine language for the processor. All programs STORE R1, X
written in a high-level language are compiled and translated into
machine code before execution, which is understood by the proces- Figure 1.21 | Examples
sor for which the program has been coded. of some instructions

ADD R1, B

1.22 Computer Fundamentals

Two processors are different if they have different instruction sets. A program run on one
computer may not run on another computer having a different processor. Two processors are
compatible if the same machine level program can run on both the processors. Therefore, the
system software is developed within the processor’s instruction set.

/g Microarchitecture is the processor design technique used for implementing the Instruction
Set. Computers having different microarchitecture can have a common Instruction Set. Pen-
tium and Athlon CPU chips implement the x86 instruction set, but have different internal

designs.

1.12 Instruction Cycle
The primary responsibility of a computer processor is to execute a sequential set of instructions
that constitute a program. CPU executes each instruction in a series of steps, called instruction
cycle (Figure 1.22).

1. A instruction cycle involves four steps (Figure 1.23):

i. Fetching: The processor fetches the instruction from the memory. The fetched
instruction is placed in the Instruction Register. Program Counter holds the address of
next instruction to be fetched and is incremented after each fetch.

Figure 1.22 | Instruction cycle

Basics of Computer 1.23

Fetch instruction
from memory
J
Place instruction
in IR
{

Increment PC

Decode instruction

Break into parts
using instruction set
architecture

Execute instruction

The operation
implied by instruction
is performed

Store
instruction
in computer
memory

Fetch next instruction

Figure 1.23 | Steps in instruction cycle

ii. Decoding: The instruction that is fetched is broken down into parts or decoded.
The instruction is translated into commands so that they correspond to those in the
CPU’s instruction set. The instruction set architecture of the CPU defines the way in
which an instruction is decoded.

iii. Executing: The decoded instruction or the command is executed. CPU performs the
operation implied by the program instruction. For example, if it is an ADD instruc-
tion, addition is performed.

iv. Storing: CPU writes back the results of execution, to the computer’s memory.

2. Instructions are of different categories. Some categories of instructions are:

i. Memory access or transfer of data between registers.
ii. Arithmetic operations like addition and subtraction.
iii. Logic operations such as AND, OR and NOT.

iv. Control the sequence, conditional connections, etc.

A CPU performance is measured by the number of instructions it executes in a second,
i.e., MIPS (million instructions per second), or BIPS (billion instructions per second).

1.13 Microprocessor

A processor’s instruction set is a determining factor in its architecture. On the basis of the
instruction set, microprocessors are classified as—Reduced Instruction Set Computer (RISC),
and Complex Instruction Set Computer (CISC). The x86 instruction set of the original Intel
8086 processor is of the CISC type. The PCs are based on the x86 instruction set.

1. CISC architecture hardwires the processor with complex instructions, which are difficult
to create otherwise using basic instructions. CISC combines the different instructions into

one single CPU.

i. CISC has a large instruction set that includes simple and fast instructions for per-
forming basic tasks, as well as complex instructions that correspond to statements
in the high level language.

1.24 Computer Fundamentals

ii.

iii.

iv.

V.

An increased number of instructions (200 to 300) results in a much more complex
processor, requiring millions of transistors.

Instructions are of variable lengths, using 8, 16 or 32 bits for storage. This results in
the processor’s time being spent in calculating where each instruction begins and
ends.

With large number of application software programs being written for the processor,
a new processor has to be backwards compatible to the older version of processors.
AMD and Cyrix are based on CISC.

RISC has simple, single-cycle instructions, which performs only basic instructions. RISC
architecture does not have hardwired advanced functions. All high-level language sup-
port is done in the software.

1.

ii.

1ii.
iv.

Vi.

RISC has fewer instructions and requires fewer transistors, which results in the
reduced manufacturing cost of processor.

The instruction size is fixed (32 bits). The processor need not spend time in finding
out where each instruction begins and ends.

RISC architecture has a reduced production cost compared to CISC processors.

The instructions, simple in nature, are executed in just one clock cycle, which speeds
up the program execution when compared to CISC processors.

RISC processors can handle multiple instructions simultaneously by processing
them in parallel.

Apple Mac G3 and PowerPC are based on RISC.

Processors like Athlon XP and Pentium IV use a hybrid of both technologies.

&5

1.14

Pipelining improves instruction execution speed by putting the execution steps into paral-
lel. A CPU can receive a single instruction, begin executing it, and receive another instruction
before it has completed the first. This allows for more instructions to be performed, about,
one instruction per clock cycle.

Parallel Processing is the simultaneous execution of instructions from the same program on
different processors. A program is divided into multiple processes that are handled in paral-
lel in order to reduce execution time.

Interconnecting the Units of a Computer

CPU sends data, instructions and information to the components inside the computer as well
as to the peripherals and devices attached to it. Bus is a set of electronic signal pathways that
allows information and signals to travel between components inside or outside of a computer.
The different components of computer, i.e., CPU, I/O unit, and memory unit are connected
with each other by a bus. The data, instructions and the signals are carried between the differ-
ent components via a bus. The features and functionality of a bus are as follows:

1. Abusis a set of wires used for interconnection, where each wire can carry one bit of data.
2. A bus width is defined by the number of wires in the bus.

Basics of Computer 1.25

CPU Memory
i i Data bus
System [Address bus
bus
Control bus

Figure 1.24 | Interaction between CPU and memory

®

A computer bus can be divided into two types—Internal Bus and External Bus.

4. The Internal Bus connects components inside the motherboard like, CPU and system
memory. It is also called the System Bus. Figure 1.24 shows interaction between proces-
sor and memory.

5. The External Bus connects the different external devices, peripherals, expansion slots, I/O
ports and drive connections to the rest of computer. The external bus allows various devices
to be attached to the computer. It allows for the expansion of computer’s capabilities. It is
generally slower than the system bus. It is also referred to as the Expansion Bus.

6. A system bus or expansion bus comprise of

three kinds of buses — data bus, address bus System bus
and control bus. v/
7. The interaction of CPU with memory and I/O CPU Memory

devices involves all the three buses. _
Expansion bus

i. The command to access the memory or the
I/O device is carried by the control bus. | | |

ii. The address of I/O device or memory is

carried by the address bus Controller Controller Controller
iii. The data to be transferred is carried by the

data bus. Hard disk Monitor Keyboard

Figure 1.25 shows interaction between processor,

memory and the peripheral deviceS. Figure 1.25 | [nteraction betWeen CPU,
memory and peripheral devices

1.14.1 System Bus
The functions of data bus, address bus and control bus, in the system bus, are as follows:

1. Data Bus transfers data between the CPU and memory. The bus width of a data bus
affects the speed of computer. The size of data bus defines the size of the processor. A pro-
cessor can be 8, 16, 32 or 64-bit processor. An 8-bit processor has 8 wire data bus to carry
1 byte of data. In a 16-bit processor, 16-wire bus can carry 16 bits of data, i.e., transfer
2 bytes, etc.

2. Address Bus connects CPU and RAM with set of wires similar to data bus. The width
of address bus determines the maximum number of memory locations the computer can
address. Currently, Pentium Pro, II, III, IV have 36-bit address bus that can address
2% bytes or 64 GB of memory.

3. Control Bus specifies whether data is to be read or written to the memory, etc.

1.26 Computer Fundamentals

1.14.2 Expansion Bus
The functions of data bus, address bus and control bus, in the expansion bus, are as follows:

1.

4.

5.

1.14.3 External Ports

The expansion bus connects external devices to the rest of computer. The external devices
like monitor, keyboard and printer connect to ports on the back of computer. These
ports are actually a part of the small circuit board or expansion card that fits into an expan-
sion slot on the motherboard. Expansion slots are easy to recognize on the motherboard.
Expansion slots make up a row of long plastic connectors at the back of the computer
with tiny copper ‘finger slots” in a narrow channel that grab the connectors on the
expansion cards. The slots are attached to tiny copper pathways on the motherboard
(the expansion bus), which allows the device to communicate with the rest of computer.
Data Bus is used to transfer data between I/O devices and CPU. The exchange of data
between CPU and I/O devices is according to the industry standard data buses. The
most commonly used standard is Extended Industry Standard Architecture (EISA)
which is a 32-bit bus architecture. Some of the common bus technologies are:

i. Peripheral Component Interconnect (PCI) bus for hard disks, sound cards, network
cards and graphics cards,

ii. Accelerated Graphics Port (AGP) bus for 3-D and full motion video,

iii. Universal Serial Bus (USB) to connect and disconnect different devices.

Address Bus carries the addresses of different I/O devices to be accessed like the hard
disk, CD ROM,, etc.
Control Bus is used to carry read/write commands, status of I/O devices, etc.

The peripheral devices interact with the CPU of the Databus <—— 4
; i Address bus <——» Serial 1010 | Serial
computer via the bus. The connections to the bus from ss bus inferface device
the peripheral devices are made via the ports and Control bus <——>
sockets provided at the sides of the computer. The |
. .1 . Databus ~ <—>
different ports and sockets facilitate the connection of , = " Parallel |0 | Parallel
different devices to the computer. Some of the stan- . , inferface |1 device
ontrol bus <——> 0

dard port connections available on the outer sides of
the computer are—port for mouse, keyboard, monitor,
network, modem, and, audio port, serial port, parallel
port and USB port. The different ports are physically
identifiable by their different shapes, size of contact

Figure 1.26 | Interaction of serial and
parallel port interfaces

pins and number of pins. Figure 1.26 shows the interaction of serial and parallel port interfaces

with the devices.

1.15 Performance of a Computer

There are a number of factors involved that are related to the CPU and have an effect on the
overall speed and performance of the computer. Some of the factors that affect the perfor-
mance of the computer include:

1.

Registers: The size of the register (word size) indicates the amount of data with which
the computer can work at any given time. The bigger the size, the more quickly it can
process data. A 32-bit CPU is one in which each register is 32 bits wide.

Basics of Computer 1.27

2. RAM: It is used to store data and instructions during execution of the instructions.
Anything you do on your computer requires RAM. When the computer is switched on,
the operating system, device drivers, the active files and running programs are loaded
into RAM. If RAM is less, then the CPU waits each time the new information is swapped
into memory from the slower devices. Larger the RAM size, the better it is. PCs nowa-
days usually have 1 GB to 4 GB of RAM.

3. System Clock: The clock speed of a CPU is defined as the frequency with which a pro-
cessor executes instructions or the data is processed. Higher clock frequencies mean
more clock ticks per second. The computer’s operating speed is linked to the speed
of the system clock. The clock frequency is measured in millions of cycles per sec-
ond or megahertz (MHz) or gigahertz (GHz) which is billions of cycles per second. A
CPU’s performance is measured by the number of instructions it executes in a second,
i.e, MIPS or BIPS. PCs nowadays come with a clock speed of more than 1 GHz. In
Windows OS, you can select the System Properties dialog box to see the processor name and

clock frequency.
System Properties E”zl
System Restore || Automatic Updates I Remote
General | Computer Name Hardware | Advanced
System:
Microsoft Windows XP
Professional
Wersion 2002
Service Pack 3
Registered to
abc
55274-640-3640456-236E60
Computer:

IntellR] Core[Th)2 Duo CPL
T5470 (@ 1.60GHz

1.58 GHz, 0.99 GB of RA&M
Physical Address Extension

| ok || cancel Apply

Figure 1.27 | System properties in Windows XP Professional

1.28 Computer Fundamentals

4. Bus: Data bus is used for transfering data between CPU and memory. The data bus width
affects the speed of computer. In a 16-bit processor, 16-bit wire bus can carry 16 bits of
data. The bus speed is measured in MHz. Higher the bus speed the better it is. Address bus
connects CPU and RAM with a set of wires similar to data bus. The address bus width
determines the maximum number of memory locations the computer can address. Pentium
Pro, II, 111, IV have 36-bit address bus that can address 2* bytes or 64 GB of memory. PCs
nowadays have a bus speed varying from 100 MHz to 400 MHz.

5. Cache Memory: Two of the main factors that affect a cache’s performance are its size
(amount of cache memory) and level L1, L2 and L3. Larger the size of cache, the better
it is. PCs nowadays have a L1 cache of 256KB and L2 cache of 1MB.

Figure 1.27 shows the general information about a computer as displayed in the system
properties window in Windows XP Professional.

1.16 Inside a Computer Cabinet

The computer cabinet encloses the components that are required for the running of the com-
puter. The components inside a computer cabinet include the power supply, motherboard,
memory chips, expansion slots, ports and interface, processor, cables and storage devices.

1.16.1 Motherboard

The computer is built up around a motherboard. The motherboard is the most important com-
ponent in the PC. It is a large Printed Circuit Board (PCB), having many chips, connectors
and other electronics mounted on it. The motherboard is the hub, which is used to connect all
the essential components of a computer. The RAM, hard drive, disk drives and optical drives
are all plugged into interfaces on the motherboard. The motherboard contains the processor,
memory chips, interfaces and sockets, etc.

The motherboard may be characterized by the form factor, chipset and type of processor
socket used. Form factor refers to the motherboard’s geometry, dimensions, arrangement and elec-
trical requirements. Different standards have been developed to build motherboards, which can
be used in different brands of cases. Advanced Technology Extended (ATX) is the most common
design of motherboard for desktop computers. Chipset is a circuit, which controls the majority
of resources (including the bus interface with the processor, cache memory and RAM, expan-
sion cards, etc.) Chipset’s job is to coordinate data transfers between the various components of
the computer (including the processor and memory). As the chipset is integrated into the moth-
erboard, it is important to choose a motherboard, which includes a recent chipset, in order to
maximize the computer’s upgradeability. The processor socket may be a rectangular connector
into which the processor is mounted vertically (slot), or a square-shaped connector with many
small connectors into which the processor is directly inserted (socket). The Basic Input Output
System (BIOS) and Complementary Metal-Oxide Semiconductor (CMOS) are present on the
motherboard.

1. BIOS: It is the basic program used as an interface between the operating system and
the motherboard. The BIOS (Figure 1.28) is stored in the ROM and cannot be rewrit-
ten. When the computer is switched on, it needs instructions to start. BIOS contain the
instructions for the starting up of the computer. The BIOS runs when the computer is

Basics of Computer 1.29

switched on. It performs a Power On Self
Test (POST) that checks that the hardware
is functioning properly and the hardware
devices are present. It checks whether the
operating system is present on the hard
drive. BIOS invokes the bootstrap loader
to load the operating system into memory.
BIOS can be configured using an interface
named BIOS setup, which can be accessed
when the computer is booting up (by press-
ing the DEL key).

CMOS Chip: BIOS ROMs are accompa- Figure 1.28 | ROM BIOS

nied by a smaller CMOS (CMOS is a type of

memory technology) memory chip. When the computer is turned off, the power sup-
ply stops providing electricity to the motherboard. When the computer is turned on
again, the system still displays the correct clock time. This is because the CMOS chip
saves some system information, such as time, system date and essential system settings.
CMOS is kept powered by a button battery located on the motherboard (Figure 1.29).
The CMOS chip is working even when the computer power is switched off. Information
of the hardware installed in the computer (such as the number of tracks or sectors on
each hard drive) is stored in the CMOS chip.

ROM BIOS on
a motherboard

Battery for
CMOS chip on
the motherboard

Figure 1.29 | Battery for CMOS chip

1.16.2 Ports and Interfaces

Motherboard has a certain number of I/O sockets that are connected to the ports and interfaces
found on the rear side of a computer (Figure 1.30). You can connect external devices to the
ports and interfaces, which get connected to the computer’s motherboard.

1.
2.
3.

Serial Port—to connect old peripherals.

Parallel Port—to connect old printers.

USB Ports—to connect newer peripherals like cameras, scanners and printers to the
computer. It uses a thin wire to connect to the devices, and many devices can share that
wire simultaneously.

1.30 Computer Fundamentals

Figure 1.30 | Ports on the rear side of a PC

L

Firewire is another bus, used today mostly for video cameras and external hard drives.

5. RJ45 connector (called LAN or Ethernet port) is used to connect the computer to a net-
work. It corresponds to a network card integrated into the motherboard.

6. VGA connector for connecting a monitor. This connector interfaces with the built-
in graphics card.

7. Audio plugs (line-in, line-out and microphone), for connecting sound speakers and the

microphone. This connector interfaces with the built-in sound card.

PS/2 port to connect mouse and keyboard into PC.

9. SCSI port for connecting the hard disk drives and network connectors.

S

1.16.3 Expansion Slots

The expansion slots (Figure 1.31) are located on the motherboard. The expansion cards are inserted
in the expansion slots. These cards give the computer new features or increased performance. There
are several types of slots:

1. ISA (Industry Standard Architecture) slot—To connect modem and input devices.

2. PCI (Peripheral Component InterConnect) slot—To connect audio, video and graphics.
They are much faster than ISA cards.

3. AGP (Accelerated Graphic Port) slot—A fast port for a graphics card.

Expansion slots

Figure 1.31 | Expansion slots

Basics of Computer 1.31

4. PCI (Peripheral Component InterConnect) Express slot—Faster bus architecture than AGP
and PCI buses.

5. PC Card—Itis used in laptop computers. It includes Wi-Fi card, network card and external
modem.

1.16.4 Ribbon Cables

Ribbon cables (Figure 1.32) are flat, insulated and consist of several tiny wires moulded together
that carry data to different components on the motherboard. There is a wire for each bit of the
word or byte and additional wires to coordinate the activity of moving information. They also
connect the floppy drives, disk drives and CD-ROM drives to the connectors in the mother-
board. Nowadays, Serial Advanced Technology Attachment (SATA) cables have replaced the
ribbon cables to connect the drives to the motherboard.

Figure 1.32 | Ribbon cables inside a PC

1.16.5 Memory Chips

The RAM consists of chips on a small circuit board (Figure 1.33). Two types of memory
chips—Single In-line Memory Module (SIMM) and Dual In-line Memory Module (DIMM)
are used in desktop computers. The CPU can retrieve information from DIMM chip at 64 bits
compared to 32 bits or 16 bits transfer with SIMM chips. DIMM chips are used in Pentium 4
onwards to increase the access speed.

Figure 1.33 | RAM memory chip

1.32 Computer Fundamentals

1.16.6 Storage Devices

The disk drives are present inside the machine. The common disk drives in a machine are hard
disk drive, floppy drive (Figure 1.34 (i & ii)) and CD drive or DVD drive. High-storage devices
like hard disk, floppy disk and CDs (Figure 1.34 (iii) & (iv)) are inserted into the hard disk
drive, floppy drive and CD drive, respectively. These storage devices can store large amounts
of data, permanently.

Figure 1.34 | Storage devices (i) Hard disk drive, (ii) DVD drive, (iii) Floppy disk, (iv) CD

1.16.7 Processor

The processor or the CPU is the main component of the computer. Select a processor based
on factors like its speed, performance, reliability and motherboard support. Pentium Pro,
Pentium 2 and Pentium 4 are some of the processors.

1.17 Application of Computers

Computers have proliferated into various areas of our lives. For a user, computer is a tool that
provides the desired information, whenever needed. You may use computer to get informa-
tion about the reservation of tickets (railways, airplanes and cinema halls), books in a library,
medical history of a person, a place in a map, or the dictionary meaning of a word. The infor-
mation may be presented to you in the form of text, images, video clips, etc.

Figure 1.35 shows some of the applications of computer. Some of the application areas of
the computer are listed below:

1. Education: Computers are extensively used, as a tool and as an aid, for imparting
education. Educators use computers to prepare notes and presentations of their lec-
tures. Computers are used to develop computer-based training packages, to provide
distance education using the e-learning software, and to conduct online examinations.
Researchers use computers to get easy access to conference and journal details and to
get global access to the research material.

2. Entertainment: Computers have had a major impact on the entertainment industry.
The user can download and view movies, play games, chat, book tickets for cinema
halls, use multimedia for making movies, incorporate visual and sound effects using
computers, etc. The users can also listen to music, download and share music, create
music using computers, etc.

Basics of Computer 1.33

Business

Education

Science&Eng

APPLICATIONS OF
COMPUTERS IN
DIFFERENT FIELDS

Figure 1.35 | Applications of computer

3. Sports: A computer can be used to watch a game, view the scores, improve the game,
play games (like chess, etc.) and create games. They are also used for the purposes of
training players.

4. Advertising: Computer is a powerful advertising media. Advertisement can be dis-
played on different websites, electronic-mails can be sent and reviews of a product
by different customers can be posted. Computers are also used to create an advertise-
ment using the visual and the sound effects. For the advertisers, computer is a medium
via which the advertisements can be viewed globally. Web advertising has become a
significant factor in the marketing plans of almost all companies. In fact, the business
model of Google is mainly dependent on web advertising for generating revenues.

5. Medicine: Medical researchers and practitioners use computers to access information
about the advances in medical research or to take opinion of doctors globally. The medi-
cal history of patients is stored in the computers. Computers are also an integral part of
various kinds of sophisticated medical equipments like ultrasound machine, CAT scan
machine, MRI scan machine, etc. Computers also provide assistance to the medical sur-
geons during critical surgery operations like laparoscopic operations, etc.

6. Science and Engineering: Scientists and engineers use computers for performing com-
plex scientific calculations, for designing and making drawings (CAD/CAM applica-
tions) and also for simulating and testing the designs. Computers are used for storing
the complex data, performing complex calculations and for visualizing 3-dimensional
objects. Complex scientific applications like the launch of the rockets, space exploration,
etc., are not possible without the computers.

1.34 Computer Fundamentals

7.

Government: The government uses computers to manage its own operations and
also for e-governance. The websites of the different government departments provide
information to the users. Computers are used for the filing of income tax return, pay-
ing taxes, online submission of water and electricity bills, for the access of land record
details, etc. The police department uses computers to search for criminals using finger-
print matching, etc.

Home: Computers have now become an integral part of home equipment. At home,
people use computers to play games, to maintain the home accounts, for communicat-
ing with friends and relatives via Internet, for paying bills, for education and learning,
etc. Microprocessors are embedded in house hold utilities like, washing machines, TVs,
food processors, home theatres, security devices, etc.

The list of applications of computers is so long that it is not possible to discuss all of them
here. In addition to the applications of the computers discussed above, computers have also
proliferated into areas like banks, investments, stock trading, accounting, ticket reservation,
military operations, meteorological predictions, social networking, business organizations,
police department, video conferencing, telepresence, book publishing, web newspapers, and
information sharing.

1.18 Summary

1.

2.

L

Computer is an electronic device which accepts data as input, performs processing on
the data, and gives the desired output. A computer may be analog or digital computer.
Speed, accuracy, diligence, storage capability and versatility are the main characteristics
of computer.

The computing devices have evolved from simple mechanical machines, like ABACUS,
Napier’s bones, Slide Rule, Pascal’'s Adding and Subtraction Machine, Leibniz’s
Multiplication and Dividing Machine, Jacquard Punched Card System, Babbage’s
Analytical Engine and Hollerith’s Tabulating Machine, to the first electronic computer.
Charles Babbage is called the father of computer.

The evolution of computers to their present state is divided into five generations of com-
puters, based on the hardware and software they use, their physical appearance and
their computing characteristics.

First generation computers were vacuum tubes based machines. These were large in size,
expensive to operate and instructions were written in machine language. Their compu-
tation time was in milliseconds.

Second generation computers were transistor based machines. They used the stored pro-
gram concept. Programs were written in assembly language. They were smaller in size,
less expensive and required less maintenance than the first generation computers. The
computation time was in microseconds.

Third generation computers were characterized by the use of IC. They consumed less
power and required low maintenance compared to their predecessors. High-level lan-
guages were used for programming. The computation time was in nanoseconds. These
computers were produced commercially.

Fourth generation computers used microprocessors which were designed using the LSI
and VLSI technology. The computers became small, portable, reliable and cheap. The

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.

24.

25.

26.

Basics of Computer 1.35

computation time is in picoseconds. They became available both to the home user and
for commercial use.

Fifth generation computers are capable of learning and self organization. These computers
use SLSI chips and have large memory requirements. They use parallel processing and
are based on Al The fifth generation computers are still being developed.

Computers are broadly classified as microcomputers, minicomputers, mainframe
computers, and supercomputers, based on their sizes and types.

Microcomputers are small, low-cost stand-alone machines. Microcomputers include
desktop computers, notebook computers or laptop, netbooks, tablet computer, hand-
held computer and smart phones.

Minicomputers are high processing speed machines having more storage capacity than
the microcomputers. Minicomputers can support 4-200 users simultaneously.
Mainframe computers are multi-user, multi-programming and high performance com-
puters. They have very high speed, very large storage capacity and can handle large
workloads. Mainframe computers are generally used in centralized databases.
Supercomputers are the most expensive machines, having high processing speed capable
of performing trillions of calculations per second. The speed of a supercomputer is mea-
sured in FLOPS. Supercomputers find applications in computing-intensive tasks.
Computer is an electronic device based on the input-process-output concept. Input/
Output Unit, CPU and Memory unit are the three main components of computer.
Input/Output Unit consists of the Input unit which accepts data from the user and the
Output unit that provides the processed data. CPU processes the input data, and, con-
trols, coordinates and supervises the operations of the computer. CPU consists of ALU,
CU and Registers. The memory unit stores programs, data and output, temporarily,
during the processing. Additionally, storage unit or secondary memory is used for the
storing of programs, data and output permanently.

Computers are used in various areas of our life. Education, entertainment, sports,
advertising, medicine, science and engineering, government, office and home are some
of the application areas of computers.

Different computers may have different organization, but the basic organization of com-
puter remains the same.

I/O Unit, CPU and Memory Unit are the main components of computer.

CPU or microprocessor is called the brain of computer. It processes data and instructions.
It also supervises the operations of the other parts of computer.

Registers, Arithmetic Logic Unit and Control Unit are the parts of CPU.

Cache memory, primary memory and secondary memory constitute the memory unit.
Primary memory consists of RAM and ROM.

Registers are low-storage capacity, high-speed storage areas within the CPU. The data,
instructions, addresses and intermediate results of processing are stored in the registers
by the CPU.

Cache memory is a very high-speed memory placed in between RAM and CPU, to
increase the processing speed. Cache memory is available in three levels - L1, L2 and L3.
RAM provides temporary storage, has a limited storage capacity and is volatile mem-
ory. The access speed of RAM is faster than access speed of the storage devices like hard
disk. The data and the instructions stored in the hard disk are brought into the RAM so
that the CPU can access the data and the instructions and process it.

1.36 Computer Fundamentals

SR

27.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

CU organizes the processing of data and instructions. It acts as a supervisor and controls
and coordinates the activity of other units of computer.

ALU performs arithmetic operations and logic operations on the data.

An instruction is an elementary operation that the processor can accomplish. The
instructions in the instruction set are the language that a processor understands. The
instruction set is embedded in the processor which determines the machine language
for the processor.

A CPU instruction cycle involves four steps: (1) Fetching the instructions from the mem-
ory, (2) Decoding instructions so that they correspond to those in the CPU’s instruction
set, (3) Executing the decoded instructions, and (4) Storing the result to the computer
memory.

RISC and CISC are the two kinds of microprocessors classified on the basis of instruction
set. CISC has a large and complex instruction set. RISC has fewer instructions.

The different components of computer are connected with each other by a bus. A com-
puter bus is of two types—system bus and expansion bus. A system bus or expansion
bus comprise of three kinds of buses—data bus, address bus and control bus.

The System Bus connects the CPU, system memory, and all other components on the
motherboard.

The Expansion Bus connects the different external devices, peripherals, expansion slots,
I/O ports and drive connections to the rest of computer.

The performance of computer is affected by the size of registers, size of RAM, speed of
system clock, width of bus, and size of cache memory.

Inside a computer cabinet, there is a motherboard, ports and interfaces, expansion slots,
ribbon cables, RAM memory chips, high storage disk drives, and, processor.

The motherboard is characterized by the form factor, chipset and type of processor socket.
Form factor is the motherboard’s geometry, dimensions, arrangement and electrical
requirements. Chipset controls the majority of resources of the computer.

BIOS and CMOS are present on the motherboard. BIOS is stored in ROM and is used as
an interface between the operating system and the motherboard. The time, the system
date, and essential system settings are saved in CMOS memory chip present on the
motherboard. When the computer power is switched off, CMOS chip remains alive
powered by a button battery.

Ports and interfaces are located on the sides of the computer case to which the external
devices can be connected. Some of the ports and interfaces are— Serial port, Parallel
port, USB port, Firewire, RJ45 connector, VGA connector, Audio plugs, PS/2 port, and
SCSI port.

Exercise Questions

Define an analog computer and a digital computer.

Give an example each of analog computer and digital computer.

List the main characteristics of the computer.

Describe the characteristics of the computer.

List three significant limitations of the computer.

Explain briefly the developments in computer technology starting from a simple calculating
machine to the first computer.

10.
11.
12.

13.
14.
15.
16.

17.
18.
19.
20.

21.
22.
23.
24.

25.
26.
27.
28.

29.
30.

Basics of Computer

What is a calculating machine?

What is the key feature of the Jacquard’s punch card?

Name the first calculating device for the counting of large numbers.
Who is called the Father of Computer?

The first generation computers used for circuitry.

Describe the first generation computer based on the

a. Hardware d. Physical appearance
b. Software e. Their applications

c. Computing characteristics
Give two examples of first generation computers.
List the drawbacks of the first generation computers.

The second generation computers used for circuitry.

Describe the second generation computer based on the

a. Hardware d. Physical appearance
b. Software e. Their applications

c. Computing characteristics
Give two examples of second generation computers.
List the drawbacks of the second generation computers.

The third generation computers used for circuitry.

Describe the third generation computer based on the

a. Hardware d. Physical appearance
b. Software e. Their applications

c. Computing characteristics
Give two examples of third generation computers.
List the drawbacks of the third generation computers.

The fourth generation computers used for circuitry.

Describe the fourth generation computer based on the

a. Hardware d. Physical appearance
b. Software e. Their applications

c. Computing characteristics
Give two examples of fourth generation computers.
List the drawbacks of the fourth generation computers.

The fifth generation computers used for circuitry.

Describe the fifth generation computer based on the

a. Hardware d. Physical appearance
b. Software e. Their applications

c. Computing characteristics

Give two examples of fifth generation computers.

Compare in detail the five generations of computers based on the

a. Hardware c. Computing characteristics
b. Software d. Physical appearance

e. Their applications

Also give at least one example of each generation of computer.

1.37

1.38 Computer Fundamentals

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

46.
47.

48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.

Define microcomputer.

Give two examples of microcomputer.

List three categories of microcomputers.
Define minicomputers.

Give two examples of minicomputer.

Define mainframe computer.

Give two examples of mainframe computer.
Define a dumb terminal.

Define an intelligent terminal.

Define a supercomputer.

Give two examples of supercomputer.

The speed of supercomputer is generally measured in
List two uses of the supercomputer.

Name the supercomputer assembled in India.

Highlight the differences between microcomputer, minicomputer, mainframe computer and super-
computer.

Define a computer.

Define:
a. Program e. CU
b. Software f. CPU
c. Hardware g. Data
d. ALU

Differentiate between software, data and hardware.

List the components of computer hardware.

Explain in detail the components of computer hardware.
List the steps in the working of the computer.

Explain the working of the computer.

Explain the input-process-output cycle.

CPU is also often called the of computer.
Define a microprocessor.

Define a motherboard.

The different parts of the CPU are , and

and are the main memory.

What is the purpose of the main memory?
List the main functions of the CPU.
ALU consists of the unit and unit.
What are the functions of the ALU?
is also called the working memory of the CPU.
List five important registers of the CPU. Also state the purpose of each register.
Why are Registers used in the CPU?
Define word size.
“This is a 64-bit processor”. Explain its meaning.

Basics of Computer

68. The size of the register is also the size.
69. Which is faster—a 32-bit processor or a 64-bitprocessor?
70. What are the functions of the control unit?
71. Explain the need of the cache memory?
72. The memory is placed between the RAM and the CPU.
73. There are levels of cache memory.
74. Explain the three levels of the cache memory.
75. State three important features of the cache memory.
76. The size of the cache memory is generally in the range
77. What is the purpose of RAM?
78. List the features of the primary memory.
79. List the key features of the secondary memory.
80. Define the stored program concept.
81. Describe the format of an instruction.
82. The common fields of an instruction are code and code.
83. What is the function of the operand code and the operation code?
84. Define an Instruction set.
85. What is the significance of the Instruction set in the CPU?
86. “Two processors are compatible”. How do you deduce this statement?
87. Define microarchitecture.
88. Define an instruction cycle.
89. Give a detailed working of the instruction cycle.
90. Name the four steps involved in an instruction cycle.
91. The number of instructions executed in a second by the CPU, is measuredin _____
92. The microprocessors are classifiedas____and _____ on the basis of the instruction set.
93. The x86 instruction set of the original Intel 8086 processor is of the _____ type.
94. Describe the features of the CISC architecture.
95. Give two examples of the CISC processor.
96. Describe the features of the RISC architecture.
97. Give two examples of the RISC processor.
98. What is the use of parallel processing and pipelining?
99. Define a bus.
100. Define a system bus.
101. Define an expansion bus.
102. Why is a bus used?

103. Define:
a. Control bus c. Databus
b. Address bus
104. A system bus or expansion bus comprises of three kinds of buses , and

105. Name the bus connecting CPU with memory?
106. Name the bus connecting I/O devices with CPU?
107. In a system bus, what is the significance of the control bus, address bus and data bus?

1.39

1.40 Computer Fundamentals

108.
1009.
110.

111.

112.
113.
114.
115.
116.
117.
118.
119.
120.
121.

122.
123.
124.
125.
126.
127.
128.
129.
130.
131.

132.
133.

134.

The of data bus affects the speed of computer.
Name the bus whose width affects the speed of computer?
The of address bus determines the maximum number of memory locations the com-

puter can address.

Name the bus whose width determines the maximum number of memory locations the computer
can address?

What are the functions of data bus, address bus and control bus in the expansion bus?
Where is the expansion card fixed on the motherboard?

What is an expansion slot?

Name three common bus technologies.

What kind of devices is attached to the PCI bus, AGP bus and USB bus?

List the factors that affect the performance of the computer.

Explain in detail the factors that affect the performance of the computer.

What is the use of the system clock?

The clock frequency is measured in _____

“The motherboard is characterized by the form factor, chipset and the type of processor socket
used”. Explain.

Define form factor.

Define chipset.

__is the most common design of the motherboard for desktop computers.
What is the significance of the chipset?

What is the function of the BIOS?

What is the function of the CMOS chip?

Explain the booting process when the computer is switched on.
What is POST?

List five ports and interfaces available on the backside of the computer to connect the devices.
What devices are attached to

Serial Port

Parallel Port

USB Port

Firewire

RJ45 connector

VGA connector

Audio plugs (Line-In, Line-Out and microphone)

PS/2 Port

i. SCSI Port

List five expansion slots available in the computer.

What devices are attached to

SR e N o

a. ISA slots d. PCI Express slot
b. PCIslot e. PCCard
c. AGP slot

What is the purpose of the Ribbon cables?

Basics of Computer

135. Two types of memory chips and are used in desktop computers.
136. List any three storage devices that are attached to the computer.

137. List some areas where the computers are used.
138. Explain briefly the use of computers in the following areas
a. Education c. Government

b. Advertising

Additional Questions

139. Give full form of the following abbreviations

a. CPU j. ES
b. I/O k. NLP
d. cU m. PDA
- FLOPS
£ VLSI "
g. PC o. UNIVAC
h. GUI p.- ENIAC
i. SLSI q- EDVAC
140. Write short notes on:
a. Components of Computer l. Microcomputers
b. Input-Process-Output m. Minicomputers
¢. I/O Unit n. Mainframe Computers
d. Central Prohcessing Unit 0. Supercomputer
e St.orage Unit p. Personal Computer (PC)
f. History of Computers
. . q. Notebook Computer
g. First Generation Computer
h. Second Generation Computer r. Tablet Computer

Netbook
Personal Digital Assistant (PDA)

=
»

Third Generation Computer

o+

Fourth Generation Computer
k. Fifth Generation Computer u. Applications of Computer

141. Give differences between the following;:

Analog and Digital Computer

—

Dumb Terminal and Intelligent Terminal

Microcomputer and Minicomputer

Minicomputer and Mainframe Computer

Mainframe computer and Supercomputer

First Generation Computers and Second Generation Computers
Second Generation Computers and Third Generation Computers
Third Generation Computers and Fourth Generation Computers
Fourth Generation Computers and Fifth Generation Computers
j- Desktop Computer and Notebook Computer

R

[

1.41

1.42 Computer Fundamentals

142. Give full form of the following abbreviations:

a. IC
MIPS
EISA
PCI
USB
AGP
BIPS
SIMM
DIMM
GHz
MHz
PCB
. BIOS
CMOS
143. Write short notes on:
Working of computer

@ e a0 o

—-

5g T ET

Central processing unit
Registers

Cache memory

RAM

Control unit

ALU

Instruction format

SR e N oo

Instruction set

-

j. Instruction Cycle
k. Microprocessor
144. Give differences between the following;:
a. Registers and cache memory
b. Cache memory and RAM
c. RISC and CISC

NS X5 2 E O nR0T 0

o
»

gE e oD OBy

A

POST
ISA
ROM
ACC
IR
PC
MAR
MBR

. DR

RISC
CISC
ATX
SATA

System bus

. Expansion bus

Performance of computer

System clock

Motherboard

BIOS

CMOS chip

Ports and interfaces in computer
Main components in a computer case
Expansion slots

System bus and expansion bus
Data bus, address bus and control bus

1.43

Basics of Computer

(panuijuo))
"'SPUODLSIIIA
ur sem auIy paads
isey AI9A SpU0J3SOd1] SpuodasoueN SPUOJISOIDIIA uonenduwod ayy, Gurssasoig
(s3)
waysAg 3radxyg sagenSuey NVALIOA ST
II[SLaIR SapNUI no [2A9] Y31y pue 10900 pue sg “o1 “oenue|
ouASI[AuI pue ‘SMOPUIpM pue wojshs ‘Gurururer3oxd QUIYDEW Ul Ud)ILIM ASofouypay,
[enynIy ‘SO(1-SIN Suneradp 98enGuey A[quiassy 9I9M SUOHONISU] drem)jog
sad1A9p Indjno synojurxd synojurid
I9U30 pue IO}UOIA IOJTUOTA IOJTUOTA Sursn ndinp se pakerdsi(q mdng
‘SpIed
payound ySnoayp
[us sem ndur sy,
-23e103s Arepuodas
10 SY[SIp dpauSewr
pue sade} onoudewr
pasn Aay,
S9O1AdP pYpULY S901AdP pRYpUELY ‘Krowaw Arewrad
IO pue dsnowt I930 pue dsnowt 103 80101123} sadey zoded
‘preoqhoy ‘preoghoy preoqAay 2100 21JoUSUIN pue spied paydung mdug
*I0)ONPUOITUISS
‘syuswarmbaz joadAy e st
Arourawr 931e] uoo11g dryo
aaey somndwod UODI[IS © U0
asay, ‘dmy or3urs ‘sar3o[ouoay pooerd are
e uo syusuodurod (ISTIA) uovi8azuy s10)sISuURI} ‘d[qerex
JO SUOT[[IW 9103)S 212§ 28417 fliap ardnymu “dryo pue Juayje ‘Krowaw
03 9[qe are sdiyp ayl pue (157) D1 ue uy ‘sdypd A310up “radeayd 10§ swnip dioudew
(1S1S) parvidaquy UOLUASUT (D) 1112410 “I9)SeJ “IS[[eus 18 pue A131dim 10y ASoouay,
2[a§ a84v] dadng 2]p2§ 284y PouASIIUT Jey) SIO)SISuRL], saqn} wnndep arempiIey
IXON pue Juesar] yussaxd 03 1461 1461 03 7961 #7961 03 9961 9561 031 0¥61 Teax
uoneIauan Y4 uonelauan yuno4 [uonesauan payjg UOI}BIUIN PUOIIS uoieIauIN 3si1 sainjeaj

123ndwo) jo suoijerauan

1.44 Computer Fundamentals

“dnyo rews

e uI pajerdajur oq
03 syusuodwod
jo spuesnoyy

‘srondwod
uonerauad JsI1y Ay}
ey} soueUd UIeW

‘Guruonpunyrew

‘Guruosear Jo sparpuny ssa] paxmbar Loy, jusnbaiy 03 suoxd
pue Sunyuny SMmo[re [STA ‘sroyndwod SIoM SaUTDEW YL
jo Aem uewny ‘A3o10u9) uonerauad 3sIyy -aArsuadxa
A} d)eTNWIS 0) 1S71 Sursn diyo 9y} ueyp sSaf AypdLnoare 210N
An K4y (1v) UODI[IS [[ews e yonuw ng yeay jo "yeay jo
aouadiyjaguy uo pajerdajur JO[& pajerouald JO[€& pajerauald snyy
19113477 U0 dIe SI0)SISUEI) 19)s€] szondwod pue saqnj wnnoea jo | a8ejueApesip
paseq are LdayJ, JO spuesnoy, pue 1a[[eWg uoneIauad puodag Iaquuinu a31e[e pasn JaSejueApy
Ovaaa)
mdwo)
OI}PWIOINY J[RLIBA
USOJUIDRIA] 9)2I0SI(] DTUOIIA[]
239 ‘sa130q01 orddy 4861 ur pue (OVING)
‘uonrudodar pue “roindwod I03e[NO[ED) pUY
ao10A ‘uonrudodar | awoy NG ‘I86T Ul 10ye130jU] [EdLIDWNN]
yooads (I1N) ‘10ssavo1doroT o1u01399[4 “(DVAINN)
urssa001] JSI A} Sem 11 dad $091 DAD pue mdwo) onewony
aden3ueT [ernjeN diy $00% (23Ul pue 02¢ INdI 1071 IN4I “8-ddd [eSIOATNN sardurexy
“uorjey[eIsuI
‘puey o ‘s10ssadapaxd 10§ wool a31e| e
jo wred ay3 ojur I} ueyy paxmbai pue azis
}1J U2Ad ued pue 1adeayd UI SNOWLIOUD 919M auereaddy
Ia[[ewg Ia[[ews are Ay, pue 1s[[eWg 9ZIS Ul I9[[eWg s1ondwod asay], [eo1sAy g
*A[reIauruod
paonpoid arom "awIn) Iy}
srandwo) ‘sronduwod jo ad1a9p Sunnduwod
"9duUAIpNE SSew uonerauad puodas 1S9)S€J A} SIOM
Sunjiomiau 0] 9[qIssadde ur A[renuew Aap se ‘suoneorjdde
Surssaooxd pue szondwod awredaq paquiasse aq 03 OYNUDIIS 10§
orrered a8re [euosIag somdwo) pey s1ojsisuen) ayJ, pasn arom Aay, uonedrddy
uoijeIauan Yijig UoljeIaUAN Y3ino4 | UuoIjRIAUAN PIIY L uoIjeI3UAN PU0IAS uoIjeIaUN 3S114 sainjeaj

DATA REPRESENTATION
AND PROGRAMMING

FUNDAMENTALS

Learning Objectives

In this chapter, you will learn about:

Data representation

Number system

Conversion from decimal to binary, octal,
hexadecimal

Conversion of binary, octal, hexadecimal
to decimal

Conversion of binary to octal, hexadecimal
Conversion of octal, hexadecimal to binary
Binary arithmetic

Signed and unsigned numbers

Binary data representation

Binary coding schemes

Logic gates

Programming fundamentals

Program development life cycle

Algorithm

Control structures

Flowchart

Pseudo code

Programming paradigms

Problem Formulation and Problem Solving

2.2 Computer Fundamentals

2.1 Data Representation

The data stored in the computer may be of different kinds, as follows:

1. Numericdata (0, 1,2, ...,9)

2. Alphabetic data (A, B, C, ..., Z)

3. Alphanumeric data—Combination of any of the symbols—(A, B, C... Z), (0, 1... 9), or
special characters (+,—, Blank), etc.

All kinds of data, be it alphabets, numbers, symbols, sound data or video data, is repre-
sented in terms of Os and 1s, in the computer. Each symbol is represented as a unique combi-
nation of Os and 1s.

This chapter discusses the number systems that are commonly used in the computer. The
number systems discussed in this chapter are—(1) Decimal number system, (2) Binary num-
ber system, (3) Octal number system, and (4) Hexadecimal number system. The number con-
versions described in this chapter are:

1. Decimal (Integer, Fraction, Integer.Fraction) to Binary, Octal, Hexadecimal
2. Binary, Octal, Hexadecimal (Integer, Fraction, Integer.Fraction) to Decimal

3. Binary to Octal, Hexadecimal
4. Octal, Hexadecimal to Binary

The chapter also discusses the binary arithmetic operations and the representation of
signed and unsigned numbers in the computer. The representation of numbers using binary
coding schemes and the logic gates used for the manipulation of data are also discussed.

2.2 Number System

A number system in base r or radix r uses unique symbols for r digits. One or more digits
are combined to get a number. The base of the number decides the valid digits that are used
to make a number. In a number, the position of digit starts from the right-hand side of the
number. The rightmost digit has position 0, the next digit on its left has position 1, and so
on. The digits of a number have two kinds of values:

1. Face value, and
2. Position value.

The face value of a digit is the digit located at that position. For example, in decimal num-
ber 52, face value at position 0 is 2 and face value at position 1 is 5.

The position value of a digit is (baseP*“"). For example, in decimal number 52, the position
value of digit 2 is 10° and the position value of digit 5 is 10'. Decimal numbers have a base of 10.

The number is calculated as the sum of, face value * baser*“", of each of the digits. For
decimal number 52, the number is 510! + 2%*10°=50 + 2 =52

In computers, we are concerned with four kinds of number systems, as follows:

1. Decimal Number System —Base 10
2. Binary Number System —Base 2
3. Octal Number System —Base 8
4. Hexadecimal Number System —Base 16

Data Representation and Programming Fundamentals 2.3

The numbers given as input to computer and the numbers given as output from the com-
puter, are generally in decimal number system, and are most easily understood by humans.
However, computer understands the binary number system, i.e.,, numbers in terms of 0s and
1s. The binary data is also represented, internally, as octal numbers and hexadecimal numbers
due to their ease of use.

A number in a particular base is written as (number), . For example, (23),, means
that the number 23 is a decimal number, and (345), shows that 345 is an octal number.

2.2.1 Decimal Number System

1. It consists of 10 digits—0, 1, 2, 3,4, 5, 6,7, 8 and 9.

2. All numbers in this number system are represented as combination of digits 0-9. For
example, 34, 5965 and 867321.

3. The position value and quantity of a digit at different positions in a number are as fol-

lows:

Position: 3 2 1 0 . -1 -2 -3
Position Value: 10° 102 10° 100 101 102 1073
Quantity: 1000 100 10 1 1/10 1/100 1/1000

2.2.2 Binary Number System

1. The binary number system consists of two digits—0 and 1.
2. All binary numbers are formed using combination of 0 and 1. For example, 1001,
11000011 and 10110101.

3. The position value and quantity of a digit at different positions in a number are as fol-

lows:

Position: 3 2 1 0 . -1 -2 -3
Position Value: 23 22 21 20 21 22 23
Quantity: 8 4 2 1 1/2 1/4 1/8

2.2.3 Octal Number System

1. The octal number system consists of eight digits—0 to 7.
2. All octal numbers are represented using these eight digits. For example, 273, 103, 2375,

etc.
3. The position value and quantity of a digit at different positions in a number are as fol-
lows:
Position: 3 2 1 0 . -1 -2 -3
Position Value: 8 8 8! 8° 8! 82 83
Quantity: 512 64 8 1 1/8 1/64 1/512

2.2.4 Hexadecimal Number System

1. The hexadecimal number system consists of sixteen digits—0 to 9, A, B, C, D, E, F,
where (A is for 10, B is for 11, C-12, D-13, E-14, F-15).

2. All hexadecimal numbers are represented using these 16 digits. For example, 3FA, 87B,
113, etc.

2.4 Computer Fundamentals

3. The position value and quantity of a digit at different positions in a number are as fol-

lows:

Position: 3

Position Value: 16°
Quantity: 4096

Table 2.1 summarizes the base, digits and largest digit for the above discussed number
systems. Table 2.2 shows the binary, octal and hexadecimal equivalents of the decimal num-

bers 0-16.

2
162
256

Table 2.1 | Summary of number system

0
16°
1

-2

167 167
1/256 1/4096

Base Digits Largest Digit
Decimal 10 0-9 9
Binary 2 0,1 1
Octal 8 0-7 7
Hexadecimal 16 0-9,A,B,C,D,E F F (15)
Table 2.2 | Decimal, binary, octal and hexadecimal equivalents
Decimal Binary Octal Hexadecimal
0 0000 000 0
1 0001 001 1
2 0010 002 2
3 0011 003 3
4 0100 004 4
5 0101 005 5
6 0110 006 6
7 0111 007 7
8 1000 010 8
9 1001 011 9
10 1010 012 A
11 1011 013 B
12 1100 014 C
13 1101 015 D
14 1110 016 E
15 1111 017 F
16 10000 020 10

Data Representation and Programming Fundamentals 2.5

2.3 Conversion from Decimal to Binary, Octal, Hexadecimal

A decimal number has two parts—integer part and fraction part. For example, in the decimal
number 23.0786, 23 is the integer part and .0786 is the fraction part. The method used for the
conversion of the integer part of a decimal number is different from the one used for the frac-
tion part. In the following subsections, we shall discuss the conversion of decimal integer,
decimal fraction and decimal integer.fraction number into binary, octal and hexadecimal
number.

2.3.1 Converting Decimal Integer to Binary, Octal, Hexadecimal

A decimal integer is converted to any other base, by using the division operation.
To convert a decimal integer to:

1. binary-divide by 2,
2. octal-divide by 8, and,
3. hexadecimal-divide by 16.

Let us now understand this conversion with the help of some examples.

4 \
I. Make a table as shown below. Write the number in centre and toBase on the left side.

to Base Number Remainder
(Quotient)
2 25

2. Divide the number with toBase. After each division, write the remainder on right-side column and
quotient in the next line in the middle column. Continue dividing till the quotient is 0.

to Base Number Remainder
(Quotient)

2 25
2 12 1
2 6 0
2 3 0
2 1 1

0 1

. J

Example 2.1 | Convert 25 from Base 10 to Base 2.

2.6 Computer Fundamentals

4)
3. Write the digits in remainder column starting from downwards to upwards,

to Base Number Remainder
(Quotient)
2 25 0
2 12 1
2 6 0
2 3 0
2 1 1
0 1

The binary equivalent of number (25),is (11001),
\The steps shown above are followed to convert a decimal integer to a number in any other base.

Example 2.1 | Continued

4)
to Base ((;l:c:lt‘i::t) Remainder to Base (Cl;ll:J;:it;il;) Remainder to Base (gl:lc:;‘it::‘rt) Remainder
2 23 8 23 16 23
2 11 1 2 7 16 1 7
2 5 1 0 2 0 1
2 2 1 The octal equivalent of (23) | The hexadecimal equivalent of
2 1 0 is (27), (23),,is (17)
0 1
The binary equivalent of (23), is
(1o11),
. J

Example 2.2 | Convert 23 from Base 10 to Base 2, 8, 16.

4)
to Base (g::t‘il;:t) Remainder to Base (g::t‘il;:t) Remainder to Base (g::t‘il;:t) Remainder
2 147 8 147 16 147
2 73 1 18 3 16 9
2 36 1 2 2 0
2 18 0 0 2 The hexadecimal equivalent of
2 9 0 The octal equivalent of (147),,is (147),,is (93),,
2 4 1 (223),
2 2 0
2 1 0
0 1

The binary equivalent of (147),is
[(10010011),

Example 2.3 | Convert 147 from Base 10 to Base 2, 8 and 16.

Data Representation and Programming Fundamentals 2.7

4 3\
Number . Number . Number .
to Base (Quotient) Remainder to Base (Quotient) Remainder to Base (Quotient) Remainder
2 94 8 94 16 94
2 47 0 11 6 16 5 14
2 23 1 5
2 11 1 0 1 The number 14 in hexadecimal
2 5 1 The octal equivalent of (94), is is E.
2 2 1 (136), The hexadecimal equivalent of
2 1 0 (94),1s (5E)
0 1
The binary equivalent of (94) is
(1011110),
L J

Example 2.4 | Convert 94 from Base 10 to Base 2, 8 and 16.

2.3.2 Converting Decimal Fraction to Binary, Octal, Hexadecimal

A fractional number is a number less than 1. It may be .5, .00453, .564, etc. We use the multipli-
cation operation to convert decimal fraction to any other base.

4)
0.2345

X2

0.4690

4690
x2
0.9380

.9380
x2
1.8760

.8760
x2
1.7520

.7520
x2
1.5040

.5040
x2
1.0080

The binary equivalent of (0.2345) is (0.001111),
L

Example 2.5 | Convert 0.2345 from Base 10 to Base 2.

2.8 Computer Fundamentals

To convert a decimal fraction to:

1. binary-multiply by 2,
2. octal-multiply by 8, and,

3. hexadecimal-multiply by 16.

Steps for conversion of a decimal fraction to any other base are:

1.

ISARE RS

Multiply the fractional number with the toBase, to get a resulting number.
The resulting number has two parts, non-fractional part and fractional part.

Record the non-fractional part of the resulting number.

Repeat the above steps at least four times.
Write the digits in the non-fractional part starting from upwards to downwards.

\.

The binary equivalent of
(.865),, is (.110111),

0.865
x2
1.730
x2
1.460
x2
0.920
x2
1.840
x2
1.680
x2
1.360

The octal equivalent of

(0.865)

10

0.865
_x8
6.920
x 8
7.360
x 8
2.880
x 8
7.040

is (.6727),

The number 13 in hexadecimal
is D.

The hexadecimal equivalent of
(0.865),, is (.DD7)

Example 2.5a | Convert 0.865 from Base 10 to Base 2, 8 and 16.

2.3.3 Converting Decimal Integer.Fraction to Binary, Octal, Hexadecimal
A decimal integer.fraction number has both integer part and fraction part. The steps for conver-

sion of a decimal integer.fraction to any other base are:

1.

2.

Convert decimal integer part to the desired base following the steps shown in Sec-

tion 2.3.1.

Convert decimal fraction part to the desired base following the steps shown in Sec-

tion 2.3.2.

The integer and fraction part in the desired base is combined to get integer.fraction.

Data Representation and Programming Fundamentals 2.9

0.4674

to Base Num.ber Remainder x 2
(Quotient)

0.9348

x2
1.8696
x2
1.7392
x 2
1.4784
x 2
0.9568
x 2
The binary equivalent of (34) is (100010), 1.936

NININININN
S |lo|lo|m|o

1

The binary equivalent of (0.4674) jis (.011101),
L The binary equivalent of (34.4674) ,is (100010.011101),

Example 2.6 | Convert 34.4674 from Base 10 to Base 2.

4)
0.4674
Number .
to Base (Quotient) Remainder x 8
3.7392
34 X8
4 5.9136
0 4 _x8
7.3088
The octal equivalent of (34) is (42), x 8
2.4704
The octal equivalent of (0.4674) is (.3572),
The octal equivalent of (34.4674), is (42.3572),

g J

Example 2.7 | Convert 34.4674 from Base 10 to Base 8.

2.4 Conversion of Binary, Octal, Hexadecimal to Decimal

A binary, octal or hexadecimal number has two parts—integer part and fraction part. For
example, a binary number could be 10011, 0.011001 or 10011.0111. The numbers 45, .362 or
245.362 are octal numbers. A hexadecimal number could be A2, .4C2 or A1.34.

The method used for the conversion of integer part and fraction part of binary, octal or
hexadecimal number to decimal number is the same; multiplication operation is used for the
conversion. The conversion mechanism uses the face value and position value of digits. The
steps for conversion are as follows:

1. Find the sum of the Face Value * (fromBase)"*"**" for each digit in the number.

a. In anon-fractional number, the rightmost digit has position 0 and the position increases as
we go towards the left.

2.10 Computer Fundamentals

(g:::it:l::) Remainder 0'45 7142
28044
16 54 4674x
16 9.4784
x 16
28704
4784x
7.6544
x 16
39264
44x
10.4704
x16
28224
4904x
7.5264

to Base

The hexadecimal equivalent of (34) is (22) ,

The hexadecimal equivalent of (0.4674)
is (.97A7),,

The hexadecimal equivalent of (34.4674) is (22.97A7) ,

L

Example 2.8 | Convert 34.4674 from Base 10 to Base 16.

b. Ina fractional number, the first digit to the left of decimal point has position 0 and the posi-

tion increases as we go towards the left. The first digit to the right of the decimal point has
position =1 and it decreases as we go towards the right (=2, -3, etc.)

101.001
Position 1/ Position -2
Position 0 Position -1
4 3\
1011 fromBase 2 toBase 10 62 fromBase 8 toBase 10 CI15 fromBase 16 toBase 10
1011 =1*%2240%224 |*2' 4+ |*2° 62 = 6*8' +2*8° CI5=C*162 + I*16' +
= 1*8+0%4 + %2+ | *] =6*8 + 2% 5%16°
=8+0+2+ 1 =48+2 =12*256 + 1*16 + 5*|
=11 =50 =3072+16+5
The decimal equivalent of The decimal equivalent of (62), =3093
(1011),is 1. is 50. The decimal equivalent of
(C15),, is 3093
L

Example 2.9 | Convert 1011 from Base 2 to Base 10.
Convert 62 from Base 8 to Base 10.
Convert C15 from Base 16 to Base 10.

Data Representation and Programming Fundamentals

(1101 fromBase 2 toBase 10

101 = 127+ %2724 0%2°

+ [*¥24

= 112+1/4+0+1/16
=13/16
=.8125

The decimal equivalent of
(.1101),is .8125

\.

.345 fromBase 8 toBase 10

345 =3*%87' +4*87%2 4+ 5*83
=3/8+4/64 +5/512
=229/512
= 447

The decimal equivalent of
(:345), is 447

.15 fromBase 16 toBase 10

A5 = 1%167" + 5% 167
= 1/16 + 5/256
=21/256
=.082

The decimal equivalent of
(.15), is .082

Example 2.10 | Convert.I101 from Base 2 to Base 10.
Convert .345 from Base 8 to Base 10.
Convert .15 from Base 16 to Base 10.

[011.1001 = [*23 + 0*2?
+ %204 1*2°
+ %27 + 0*272
+0%273 + | %27

=8+0+2+1+

I+9/16

=11.5625

The decimal equivalent of
(1011.1001), is 11.5625

\.

P
1011.1001 fromBase 2 toBase 10

1/2+0+0+1/16

24.36 fromBase 8 toBase 10
2436 = 2*8' + 4*8° +
3%8" +6*8
=16+4+3/8+6/64

=20 + 30/64

=20.4687

The decimal equivalent of
(24.36), is 20.4687

4D.21 fromBase 16 toBase 10

4D.21 =4*16'+ D*16° +

2167 + 1*1672

=64+ 13+2/16
+ 1/256
=77 +33/256

=77.1289

The decimal equivalent of
(4D.21),, is 77.1289

Example 2.11 | Convert 1011.1001 from Base 2 to Base 10.
Convert 24.36 from Base 8 to Base 10.
Convert 4D.21 from Base 16 to Base 10.

2.5 Conversion of Binary to Octal, Hexadecimal

A binary number can be converted into octal or hexadecimal number using a shortcut method.
The shortcut method is based on the following information:

1. An octal digit from 0 to 7 can be represented as a combination of 3 bits, since 23 = 8.
2. A hexadecimal digit from 0 to 15 can be represented as a combination of 4 bits, since
24=16.

2.12 Computer Fundamentals

The Steps for Binary to Octal Conversion are:

1. Partition the binary number in groups of three bits, starting from the right-most side.
2. For each group of three bits, find its octal number.
3. The result is the number formed by the combination of the octal numbers.

The Steps for Binary to Hexadecimal Conversion are:

1. Partition the binary number in groups of four bits, starting from the right-most side.
2. For each group of four bits, find its hexadecimal number.
3. The result is the number formed by the combination of the hexadecimal numbers.

P
Given binary number [110101100110)
I. Partition binary number in groups of three bits, starting from the right-most side.
| 10 101 100 10
2. Foreach group find its octal number.
| 110 101 100 10
| 6 5 4 6
L 3. The octal number is 16546.)

Example 2.12 | Convert the binary number 1110101100110 to octal.

e 3\

Given binary number I1r1olorioorio
I. Partition binary number in groups of four bits, starting from the right-most side.
| 101 O1I'1lO0O O110
2. Foreach group find its hexadecimal number.
| 101 OI'lT0O 0110
| D 6 6

3. The hexadecimal number is 1D66.
L J

Example 2.13 | Convert the binary number 11101011001 10 to hexadecimal

2.6 Conversion of Octal, Hexadecimal to Binary
The conversion of a number from octal and hexadecimal to binary uses the inverse of the steps
defined for the conversion of binary to octal and hexadecimal.

The Steps for Octal to Binary Conversion are:

1. Convert each octal number into a three-digit binary number.

2. The result is the number formed by the combination of all the bits.
The Steps for Hexadecimal to Binary Conversion are:

1. Convert each hexadecimal number into a four-digit binary number.
2. The result is the number formed by the combination of all the bits.

Data Representation and Programming Fundamentals 2.13

I. Given number is 2BA3
2. Convert each hexadecimal digit into four digit binary number.

2 B A 3

0010 1011 1010 0011
3. Combine all the bits to get the result 0010101 11010001 I.

Example 2.14 | Convert the hexadecimal number 2BA3 to binary.

I. Given number is 473

2. Convert each octal digit into three digit binary number.
4 7 3
100 I oll

3. Combine all the bits to get the result 10011101 1.

Example 2.15 | Convert the octal number 473 to binary.

2.7 Binary Arithmetic

The arithmetic operations—addition, subtraction, multiplication and division, performed on
the binary numbers is called binary arithmetic. In computer, the basic arithmetic operations
performed on the binary numbers is:

1. Binary addition, and
2. Binary subtraction.

In the following subsections, we discuss the binary addition and the binary subtraction
operations.

2.7.1 Binary Addition

Binary addition involves addition of two or more binary numbers. The binary addition rules are
used while performing the binary addition. Table 2.3 shows the binary addition rules.

Table 2.3 | Binary addition rules

Input | Input 2 Sum Carry
0 0 > 0 No carry
0 1 > 1 No carry
1 0 > 1 No carry
1 1 2> 0 1

Binary addition of three inputs follows the rule shown in Table 2.4.

2.14 Computer Fundamentals

Table 2.4 | Binary addition of three inputs

Input | Input 2 Input 3 Sum Carry
0 0 0 > 0 No Carry
0 0 1 > 1 No Carry
0 1 0 2> 1 No Carry
0 1 1 > 0 1
1 0 0 2> 1 No Carry
1 0 1 > 0 1
1 1 0 > 0 1
1 1 1 > 1 1

Addition of the binary numbers involves the following steps:

1. Start addition by adding the bits in unit column (the right-most column). Use the rules
of binary addition.

The result of adding bits of a column is a sum with or without a carry.

Write the sum in the result of that column.

If a carry is present, the carry is carried-over to the addition of the next left column.
Repeat steps 2—4 for each column, i.e., the tens column, hundreds column and so on.

ISARE RS

Let us now understand binary addition with the help of some examples.
(N\
When we add 0 and | in the unit column, sum is | and there is no carry. The sum | is written in the unit

column of the result. In the tens column, we add | and 0 to get the sum |. There is no carry. The sum | is
written in the tens column of the result.

Binary Addition Decimal Addition
10 2
+01 + 1
Result 11 3
112 - 310
g J

Example 2.16 | Add 10and O1. Verify the answer with the help of decimal addition.

4)
When we add | and [in the unit column, sum is 0 and carry is |. The sum 0 is written in the unit column

of the result. The carry is carried-over to the next column, i.e., the tens column. In the tens column, we add
0, | and the carried-over I, to get sum 0 and carry |. The sum O is written in the tens column of the result.
The carry | is carried-over to the hundreds column. In the hundreds column, the result is 1.

Binary Addition Decimal Addition
11 €Carry
01 1
+11 + 3
Result 1 00 4
100,=4,,
g J

Example 2.17 | Add 0l and I 1. Verify the answer with the help of decimal addition.

Data Representation and Programming Fundamentals 2.15

(N\
Binary Addition Decimal Addition
11 € Carry

11 3

+11 +3

Result 110 6

110,=6,,

& J

Example 2.18 | Add I and I 1. Verify the answer with the help of decimal addition.

4)
Binary Addition Decimal Addition
1111 <€ Carry
1001 9
+ 1111 +15
11000 24
11000, = 24,,
. J
Example 2.19 | Add 1001 and I'111. Verify the answer with the help of decimal addition.
4)
Binary Addition Decimal Addition
11111 € Carry
10111 23
+11000 +24
111 7
110110 54
110110, =54,
. J
Example 2.20 | Add 10111, 11000 and I11. Verify the answer with the help of decimal addition.

2.7.2 Binary Subtraction

Binary subtraction involves subtracting of two binary numbers. The binary subtraction rules
are used while performing the binary subtraction. The binary subtraction rules are shown in
Table 2.5, where “Input 2” is subtracted from “Input 1.”

Table 2.5 | Binary subtraction rules

Input I Input 2 Difference Borrow
0 0 > 0 No borrow
0 1 > 1 1
1 0 > 1 No borrow
1 1 > 0 No borrow

The steps for performing subtraction of the binary numbers are as follows:

1. Start subtraction by subtracting the bit in the lower row from the upper row, in the unit
column.

2.16 Computer Fundamentals

2. Use the binary subtraction rules. If the bit in the upper row is less than lower row, bor-
row 1 from the upper row of the next column (on the left side). The result of subtracting
two bits is the difference.

3. Write the difference in the result of that column.

4. Repeat steps 2 and 3 for each column, i.e., the tens column, hundreds column and so on.

Let us now understand binary subtraction with the help of some examples.

4 \
When we subtract | from | in the unit column, the difference is 0. Write the difference in the unit column

of the result. In the tens column, subtract O from | to get the difference 1. Write the difference in the tens
column of the result.

Binary Subtraction Decimal Subtraction
11 3
- 01 -1
Result 10 2
102 - 210
g J

Example 2.21 | Subtract 01 from I1. Verify the answer with the help of decimal subtraction.

4 \
When we subtract | from 0 in the unit column, we have to borrow | from the left column since 0 is less than 1.

After borrowing from the left column, 0 in the unit column becomes 10, and, | in the left column becomes 0. We
perform 10-1 to get the difference I. We write the difference in the unit column of the result. In the tens column,
subtract 0 from 0 to get the difference 0. We write the difference O in the tens column of the result.

Binary Subtraction Decimal Subtraction
010
10 2
=01 =1
01 1
01,=1,
\ J

Example 2.22 | Subtract 01 from 10. Verify the answer with the help of decimal subtraction.

4 \
When we do 0-1 in the unit column, we have to borrow | from the left column since O is less than I. After

borrowing from the left column, 0 in the unit column becomes 10, and, | in the left column becomes 0. We

perform 10-1 to get the difference 1. We write the difference in the unit column of the result. In the tens

column, when we do 0-1, we again borrow | from the left column. We perform 10-1 to get the difference

I. We write the difference in the tens column of the result. In the hundreds column, when we do 0-1, we

again borrow | from the left column. We perform 10-1 to get the difference 1. We write the difference in

the hundreds column of the result. In the thousands column, 0-0 is 0. We write the difference 0 in the
\thousands column of the result.

Example 2.23 | Subtract 0111 from 1110. Verify the answer with the help of decimal subtraction.

Data Representation and Programming Fundamentals 2.17

(N\
Binary Subtraction Decimal Subtraction
010
010 Borrow
010
+1 10 14
-0111 -07
0111 7
0111,=7,
& J

Example 2.23 | Continued

(N\

Binary Subtraction Decimal Subtraction

11

191610 Borrow
1+0001 49
100110 =338
001011 11

001011,=11,,

g J

Example 2.24 | Subtract 100110 from 110001. Verify the answer with the help of decimal subtraction.

2.8 Signed and Unsigned Numbers

A binary number may be positive or negative. Generally, we use the symbol “+” and “~” to
represent positive and negative numbers, respectively. The sign of a binary number has to
be represented using 0 and 1, in the computer. An n-bit signed binary number consists of two
parts—sign bit and magnitude. The left most bit, also called the Most Significant Bit (MSB) is
the sign bit. The remaining n—1 bits denote the magnitude of the number.

In signed binary numbers, the sign bit is 0 for a positive number and 1 for a negative num-
ber. For example, 01100011 is a positive number since its sign bit is 0, and, 11001011 is a nega-
tive number since its sign bit is 1. An 8-bit signed number can represent data in the range —128
to +127 (-27to +27-1). The left-most bit is the sign bit.

\MSB | oltoooll
Sign bit Magnitude ~ MSB

In an n-bit unsigned binary number, the magnitude of the number 7 is stored in n bits. An
8-bit unsigned number can represent data in the range 0 to 255 (2° = 256).

2.8.1 Complement of Binary Numbers

Complements are used in computer for the simplification of the subtraction operation. For any
number in base r, there exist two complements—(1) ’s complement and (2) r-1’s complement.

2.18 Computer Fundamentals

Number System Base Complements possible

Binary 2 1’s complement and 2’s complement
Octal 8 7’s complement and 8’s complement
Decimal 10 9’s complement and 10’s complement
Hexadecimal 16 15’s complement and 16’s complement

Let us now see how to find the complement of a binary number. There are two types of
complements for the binary number system —1’s complement and 2’s complement.

1. 1’s Complement of Binary Number is computed by changing the bits 1 to 0 and the bits
0 to 1. For example,
1’s complement of 101 is 010
1’s complement of 1011 is 0100
1’s complement of 1101100 is 0010011
2. 2’s Complement of Binary Number is computed by adding 1 to the 1’s complement of
the binary number. For example,

2’s complement of 101 is 010 + 1 =011
2’s complement of 1011 is 0100 + 1 = 0101
2’s complement of 1101100 is 0010011 + 1 = 0010100

The rule to find the complement of any number N in base r having n digits is
(r—1)'s complement— (" — 1) - N
(r's) complement—(r"—1) =N+ 1= (r"— N)

2.9 Binary Data Representation

A binary number may also have a binary point, in addition to the sign. The binary point
is used for representing fractions, integers and integer-fraction numbers. Registers are high-
speed storage areas within the Central Processing Unit (CPU) of the computer. All data are
brought into a register before it can be processed. For example, if two numbers are to be add-
ed, both the numbers are brought in registers, added, and the result is also placed in a register.
There are two ways of representing the position of the binary point in the register —fixed point
number representation and floating point number representation.

The fixed point number representation assumes that the binary point is fixed at one position
either at the extreme left to make the number a fraction, or at the extreme right to make the
number an integer. In both cases, the binary point is not stored in the register, but the number
is treated as a fraction or integer. For example, if the binary point is assumed to be at extreme
left, the number 1100 is actually treated as 0.1100.

The floating point number representation uses two registers. The first register stores the num-
ber without the binary point. The second register stores a number that indicates the position
of the binary point in the first register.

We shall now discuss representation of data in the fixed point number representation and
floating point number representation.

Data Representation and Programming Fundamentals 2.19

2.9.1 Fixed Point Number Representation
The integer binary signed number is represented as follows:
1. For a positive integer binary number, the sign bit is 0 and the magnitude is a positive
binary number.
2. For a negative integer binary number, the sign bit is 1. The magnitude is represented in
any one of the three ways:
a. Signed Magnitude Representation—The magnitude is the positive binary number itself.

Signed 1’s Complement Representation—The magnitude is the 1’s complement of the posi-
tive binary number.

c. Signed 2’s Complement Representation—The magnitude is the 2’s complement of the posi-
tive binary number.

Table 2.6 shows the representation of the signed number 18.

Table 2.6 | Fixed point representation of the signed number 18

Sign bit is 0.
+18 0 0010010 0010010 is binary equivalent of +18
Signed magnitude 10010010 Sign bit is 1.
representation 0010010 is binary equivalent of +18
Signed 1’s complement Sign bit is 1.
-18 representation 1 1iotiol 1101101 is 1’s complement of +18
Signed 2’s complement 11101110 Sign bit is 1.
representation 1101110 is 2’s complement of +18

Signed magnitude and signed 1’s complement representation are seldom used in computer
arithmetic.

Let us now perform arithmetic operations on the signed binary numbers. We use the signed
2’s complement representation to represent the negative numbers.

1. Addition of Signed Binary Numbers —The addition of any two signed binary numbers
is performed as follows:

a. Represent the positive number in binary form.(For example, +5 is 0000 0101 and +10
is 0000 1010)

b. Represent the negative number in 2’s complement form. (For example, -5 is 1111
1011 and -10is 1111 0110)

c. Add the bits of the two signed binary numbers.

d. Ignore any carry out from the sign bit position.

Please note that the negative output is automatically in the 2’s complement form.

We get the decimal equivalent of the negative output number, by finding its 2’s comple-
ment, and attaching a negative sign to the obtained result.

Let us understand the addition of two signed binary numbers with the help of some
examples.

2.20 Computer Fundamentals

Ve

L

+5 in binary form, i.e., 0000 0101. +10 in binary form, i.e., 0000 1010.

Binary Addition

00000101
00001010
00001111

Decimal Addition

+ 5
+10
+15

The result is 0000 1111, i.e, +15

Example 2.25 | Add +5 and +10.

Ve

L

-5in 2's complement formis I 111 101 1. +10 in binary form is 0000 1010.
Binary Addition Decimal Addition
11111011 - 5
00001010 +10
00000101 + 5

The result is 0000 0101, i.e., +5

Example 2.26 | Add -5 and +10.

Ve

+5 in binary form is 0000 0101. =10 in 2's complement formis [[11 0110.

Binary Addition
00000101

11110110
11111011

Decimal Addition
+ 5
=10
- 5

The result is 1111 1011,, i.e., -5,

0

The result is in 2's complement form. To find its decimal equivalent:
Find the 2's complement of 111 1011, i.e., 0000 0100 + | = 0000 0101. This is binary equivalent of +5.

Attaching a negative sign to the obtained result gives us -5.
.

Example 2.27 | Add +5 and -10.

P
-5in 2’s complement formis 1111 1011. =10 in 2’s complement formis [111 01 0.
Binary Addition Decimal Addition
11111011 - 5
11110110 -10
11110001 -15

The result is 1111 0001, i.e., -15,,

The result is in 2’s complement form. To find its decimal equivalent:

Find the 2's complement of 1111 0001, i.e., 0000 I 110+ | =0000 I I I1. This is binary equivalent of +15.

Attaching a negative sign to the obtained result gives us —15.
.

Example 2.28 | Add -5 and -10.

Data Representation and Programming Fundamentals 2.21

2. Subtraction of Signed Binary Numbers —The subtraction of signed binary numbers is
changed to the addition of two signed numbers. For this, the sign of the second number
is changed before performing the addition operation.

(<A) - (#B)=(-A) + (-B) (+B in subtraction is changed to —B in addition)
(+A) - (+B) = (+A) + (-B) (+B in subtraction is changed to —B in addition)
(<A) - (-B)=(-A) + (+B) (-Bin subtraction is changed to +B in addition)
(+A) - (-B)=(+A) + (+B) (-Bin subtraction is changed to +B in addition)

We see that the subtraction of signed binary numbers is performed using the addition op-
eration.

The hardware logic for the fixed point number representation is simple, when we use 2’s
complement for addition and subtraction of the signed binary numbers. When two large num-
bers having the same sign are added, then an overflow may occur, which has to be handled.

2.9.2 Floating Point Number Representation

The floating point representation of a number has two parts—mantissa and exponent. The
mantissa is a signed fixed point number. The exponent shows the position of the binary point
in the mantissa.

For example, the binary number +11001.11 with an 8-bit mantissa and 6-bit exponent is
represented as follows:

1. Mantissa is 01100111. The left most 0 indicates that the number is positive.
2. Exponent is 000101. This is the binary equivalent of decimal number + 5.
3. The floating point number is Mantissa x 2P, j e, + (.1100111) x 2+5.

The arithmetic operation with the floating point numbers is complicated, and uses complex
hardware as compared to the fixed point representation. However, floating point calculations
are required in scientific calculations, so, computers have a built-in hardware for performing
floating point arithmetic operations.

2.10 Binary Coding Schemes

The alphabetic data, numeric data, alphanumeric data, symbols, sound data and video data,
are represented as combination of bits in the computer. The bits are grouped in a fixed size,
such as 8 bits, 6 bits or 4 bits. A code is made by combining bits of definite size. Binary Coding
schemes represent the data such as alphabets, digits 0-9, and symbols in a standard code. A
combination of bits represents a unique symbol in the data. The standard code enables any
programmer to use the same combination of bits to represent a symbol in the data.

The binary coding schemes that are most commonly used are:

1. Extended Binary Coded Decimal Interchange Code (EBCDIC),
2. American Standard Code for Information Interchange (ASCII), and
3. Unicode

In the following subsections, we discuss the EBCDIC, ASCII and Unicode coding schemes.

2.22 Computer Fundamentals

2.10.1 EBCDIC

1.

2.
3.

4.

The Extended Binary Coded Decimal Interchange Code (EBCDIC) uses 8 bits (4 bits for
zone, 4 bits for digit) to represent a symbol in the data.

EBCDIC allows 2% = 256 combinations of bits.

256 unique symbols are represented using EBCDIC code. It represents decimal num-
bers (0-9), lower case letters (a—z), uppercase letters (A-Z), Special characters, and Con-
trol characters (printable and non-printable, e.g., for cursor movement, printer vertical
spacing, etc.).

EBCDIC codes are mainly used in the mainframe computers.

2.10.2 ASCI

1.

2.
3.

The American Standard Code for Information Interchange (ASCII) is widely used in

computers of all types.

ASCII codes are of two types—ASCII-7 and ASCII-8.

SCII-7 is a 7-bit standard ASCII code. In ASCII-7, the first 3 bits are the zone bits and the

next 4 bits are for the digits. ASCII-7 allows 27 = 128 combinations. 128 unique symbols

are represented using ASCII-7. ASCII-7 has been modified by IBM to ASCII-8.

ASCII-8 is an extended version of ASCII-7. ASCII-8 is an 8-bit code having 4 bits for

zone and 4 bits for the digit. ASCII-8 allows 28 = 256 combinations. ASCII-8 represents

256 unique symbols. ASCII is used widely to represent data in computers.

The ASCII-8 code represents 256 symbols.

a. Codes 0 to 31 represent control characters (non-printable), because they are used for
actions like, Carriage return (CR), Bell (BEL), etc.

b. Codes 48 to 57 stand for numeric 0-9.

c. Codes 65 to 90 stand for uppercase letters A-Z.

d. Codes 97 to 122 stand for lowercase letters a—z.

e. Codes 128 to 255 are the extended ASCII codes.

2.10.3 Unicode

1.

SN

Unicode is a universal character encoding standard for the representation of text which
includes letters, numbers and symbols in multi-lingual environments. The Unicode
Consortium based in California developed the Unicode standard.

Unicode uses 32 bits to represent a symbol in the data.

Unicode allows 232 = 4164895296 (~ 4 billion) combinations.

Unicode can uniquely represent any character or symbol present in any language like
Chinese, Japanese, etc. In addition to the letters; mathematical and scientific symbols
are also represented in Unicode codes.

An advantage of Unicode is that it is compatible with the ASCII-8 codes. The first 256
codes in Unicode are identical to the ASCII-8 codes.

Unicode is implemented by different character encodings. UTE-8 is the most commonly
used encoding scheme. UTF stands for Unicode Transformation Format. UTF-8 uses 8
bits to 32 bits per code.

Data Representation and Programming Fundamentals

If you wish to see the Unicode character encoding in MS-Word 2007, do as follows:
<Insert> <Symbol>. A Symbol dialog box will appear which displays the symbols, and the

character codes in a coding scheme, as shown in Figure 2.1.

2.23

Symbols | Special Characters

Font: {normal text) v Subset: Mathematical Operators
:—."-‘;'.y_.|_ V== == Z]ial s
f — o e T Y S o -

[]] el i =

LiLid |(did|E L|d |
o el e el G S R i I
= =[Sl RIS EE JL |l

e FaEaE e 2 Al I

Recently used symbols:
n|€l, || £]2|o|®|™ £|#|<|z]+] x|«

INTERSECTION Character code: 2229 from: Unicode (hex)<

| futoCorrect. .. ‘ IShnrtcut Kev... ‘ Shorteut keys , Alk+¥

Unicode coding in
hexadecimal for
the selected symbol

Insert Cancel

!

Shows that
character code
is in Unicode

(hexadecimal)

Figure 2.1 | Unicode coding

2.11 Logic Gates

The information is represented in the computer in binary form. Binary information is rep-
resented using signals in two states off or on which correspond to 0 or 1, respectively. The
manipulation of the binary information is done using logic gates. Logic gates are the hardware
electronic circuits which operate on the input signals to produce the output signals. Each logic
gate has a unique symbol and its operation is described using algebraic expression. For each
gate, the truth table shows the output that will be outputted for the different possible combina-
tions of the input signal. The AND, OR and NOT are the basic logic gates. Some of the basic
combination of gates that are widely used are —NAND, NOR, XOR and XNOR.

Table 2.7 shows the different logic gates, their symbols, their algebraic function and the
truth table for each logic gate. The comments list the features of each logic gate.

2.24 Computer Fundamentals

Table 2.7 | Logic gates

Operation Symbol Algebraic

Function

Comments

Truth Table

AND A
B AB

X=ABor
X=AB

Two or more bi-
nary inputs

The output is 1 if
all the inputs are
1, otherwise the
output is 0.
Represented using
a multiplication
symbol “.”

A.B

el k=R E=]

| o= |O|.

il Rl Hew i Nan)

OR A A'B

X=A+B

Two or more bi-
nary inputs

The output is 1 if
at least one input
is 1, otherwise the
outputis 0.
Represented using
a“+”

A+B

k=R k=]

I OoO=m|O|®.

== |o

NOT

One binary input
The output is
complement (op-
posite) of input. If
input is 1 output is
0 and if input is 0
outputis 1.
Represented using

s

NAND A D@
B

X = (ABY

Two or more bi-
nary inputs
NAND is comple-
ment of AND

(A.By

i =l k=R =]

[l el N ey - - |

Ol |FR |-

NOR AD@Y
B

X = (A +BY

Two or more bi-
nary inputs
NOR is comple-
ment of OR.

(A+B)’

1

el k== "]

= OoOR [O|wm

0
0
0

(Continued)

Data Representation and Programming Fundamentals 2.25

Table 2.7 | Continued

Operation Symbol Algebraic Comments Truth Table
Function
XOR e Two or more binary
A AGB inputs A B (A®B)
B e The output is 1 if 0 0 0
X=(A ®B) the odd number of 0 1 1
inputsis 1.
® Represented 1 0 1
usinga“ @ " 1 1 0
XNOR ® Two or more binary ;
inputs A | B | (A®B)
e XNORis 0 0 1
X=(A®B)y complement of 0 1 0
XOR.
1 0 0
1 1 1

2.12 Programming Fundamentals

Computer is an electronic device that accepts data, processes it, and generates the relevant
output. It can perform both simple and complex tasks with very high speed and accuracy.
However, a computer cannot perform any task—simple or complex, of its own. Computers
need to be instructed about “how” the task is to be performed. The set of instructions that in-
struct the computer about the way the task is to be performed is called a program. A program
is required for processing all kind of tasks—simple tasks like addition of two numbers, and
complex tasks like gaming etc.

In this chapter, we will discuss the steps that are followed while writing a computer pro-
gram. A brief description of different programming constructs is also presented. We will also
discuss the characteristics of a good program.

2.13 Program Development Life Cycle

As stated earlier, a program is needed to instruct the computer about the way a task is to be
performed. The instructions in a program have three essential parts:

1. Instructions to accept the input data that needs to be processed,
2. Instructions that will act upon the input data and process it, and
3. Instructions to provide the output to user

The instructions in a program are defined in a specific sequence. Writing a computer pro-
gram is not a straightforward task. A person who writes the program (computer programmer)
has to follow the Program Development Life Cycle.

Let’s now discuss the steps that are followed by the programmer for writing a program:

1. Problem Analysis—The programmer first understands the problem to be solved. The
programmer determines the various ways in which the problem can be solved, and de-
cides upon a single solution which will be followed to solve the problem.

2.26 Computer Fundamentals

2. Program Design—The selected solution is represented in a form, so that it can be cod-
ed. This requires three steps:
a. Analgorithm is written, which is an English-like explanation of the solution.

b. A flowchart is drawn, which is a diagrammatic representation of the solution. The
solution is represented diagrammatically, for easy understanding and clarity.

c. A pseudo code is written for the selected solution. Pseudo code uses the structured
programming constructs. The pseudo code becomes an input to the next phase.

3. Program Development
a. The computer programming languages are of different kinds —low-level languages,
and high-level languages like C, C++ and Java. The pseudo code is coded using a
suitable programming language.

b. The coded pseudo code or program is compiled for any syntax errors. Syntax
errors arise due to the incorrect use of programming language or due to the gram-
matical errors with respect to the programming language used. During compila-
tion, the syntax errors, if any, are removed.

c. The successfully compiled program is now ready for execution.

d. The executed program generates the output result, which may be correct or incor-
rect. The program is tested with various inputs, to see that it generates the desired
results. If incorrect results are displayed, then the program has semantic error (logical
error). The semantic errors are removed from the program to get the correct results.

e. The successfully tested program is ready for use and is installed on the user’s
machine.

4. Program Documentation and Maintenance —The program is properly documented,
so that later on, anyone can use it and understand its working. Any changes made to
the program, after installation, forms part of the maintenance of program. The program
may require updating, fixing of errors etc. during the maintenance phase.

Table 2.8 summarises the steps of the program development cycle.

Table 2.8 | Program development life cycle

Program Analysis ¢ Understand the problem
¢ Have multiple solutions
* Select a solution

Program Design e Write Algorithm
e Write Flowchart
e Write Pseudo code

Program Develop- e Choose a programming language
ment * Write the program by converting the pseudo code, and then using the
programming language.
¢ Compile the program and remove syntax errors, if any
¢ Execute the program.
e Test the program. Check the output results with different inputs. If the
output is incorrect, modify the program to get correct results.
¢ Install the tested program on the user’s computer.
Program * Document the program, for later use.

Documentation and e Maintain the program for updating, removing errors, changing
maintenance requirements etc.

Data Representation and Programming Fundamentals 2.27

2.14 Algorithm

Algorithm is an ordered sequence of finite, well defined, unambiguous instructions for com-
pleting a task. Algorithm is an English-like representation of the logic which is used to solve
the problem. It is a step-by-step procedure for solving a task or a problem. The steps must be
ordered, unambiguous and finite in number.

For accomplishing a particular task, different algorithms can be written. The different algo-
rithms differ in their requirements of time and space. The programmer selects the best-suited
algorithm for the given task to be solved.

Let’s now look at two simple algorithms to find the greatest among three numbers, as fol-
lows:

Algorithm to find the greatest among three numbers:

ALGORITHM 1

Step 1: Start

Step 2: Read the three numbers A, B, C

Step 3: Compare A and B. If A is greater perform step 4 else perform step 5.

Step 4: Compare A and C. If A is greater, output “A is greatest” else output “C is greatest”.
Perform step 6.

Step5: Compare B and C. If B is greater, output “B is greatest” else output “C is greatest”.

Step 6: Stop

ALGORITHM 2

Step7: Start

Step 8: Read the three numbers A, B, C

Step9: Compare A and B. If A is greater, store A in MAX, else store B in MAX.

Step 10: Compare MAX and C. If MAX is greater, output “MAX is greatest” else output
“Cis greatest”.

Step 11: Stop

Both the algorithms accomplish the same goal, but in different ways. The programmer
selects the algorithm based on the advantages and disadvantages of each algorithm. For ex-
ample, the first algorithm has more number of comparisons, whereas in the second algorithm
an additional variable MAX is required.

2.15 Control Structures

The logic of a program may not always be a linear sequence of statements to be executed in
that order. The logic of the program may require execution of a statement based on a decision.
It may repetitively execute a set of statements unless some condition is met. Control structures
specify the statements to be executed and the order of execution of statements.

Flowchart and Pseudo code use control structures for representation. There are three kinds
of control structures:

1. Sequential —instructions are executed in linear order

2. Selection (branch or conditional) —it asks a true/false question and then selects the next
instruction based on the answer

3. Iterative (loop)—it repeats the execution of a block of instructions.

2.28 Computer Fundamentals

The flowchart and the pseudo code control structures are explained in their respective
sections.

2.16 Flowchart

A flowchart is a diagrammatic representation of the logic for solving a task. A flowchart is
drawn using boxes of different shapes with lines connecting them to show the flow of control.
The purpose of drawing a flowchart is to make the logic of the program clearer in a visual
form. There is a famous saying “A photograph is equivalent to thousand words”. The same
can be said of flowchart. The logic of the program is communicated in a much better way us-
ing a flowchart. Since flowchart is a diagrammatic representation, it forms a common medium
of communication.

2.16.1 Flowchart Symbols

A flowchart is drawn using different kinds of symbols. A symbol used in a flowchart is for

a specific purpose. Figure 2.2 shows the different symbols of the flowchart along with their

names. The flowchart symbols are available in most word processors including MS-WORD,

facilitating the programmer to draw a flowchart on the computer using the word processor.
A single line description of the flowchart symbols is given in Table 2.9.

2.16.2 Preparing a Flowchart

Aflowchartmaybesimpleorcomplex. Themostcommonsymbolsthatareusedtodrawaflowchart
are—Process, Decision, Data, Terminator, Connector and Flow lines. While drawing a flow-
chart, some rules need to be followed —(1) A flowchart should have a start and end, (2) The

Process Alternate Decision Data Predefined
process process
Internal storage| Document Multi document | Terminator Preparation

J

] 3 O [

Manual Manual Connector Off-page Card
input I:I operation U : connector G [
Punched tape | Summing OR Collate Sort
R e x| 6
Extract Merge Stored data Delay Sequential

[

access
A V D storage Q

Magnetic Direct access Display Flow lines
disk storage l —_— l
Jlco | O r—

Figure 2.2 | Flowchart symbols (available for use in MS-WORD)

Data Representation and Programming Fundamentals

Table 2.9 | Description of flowchart symbols

2.29

Process—operation or action step

Alternate Process—alternate to normal process
Document—a document

Multi document—more than one document
Preparation—set-up process

Punched Tape—I/O from punched tape
Collate—organize in a format

Merge—merge in a predefined order
Sort—sort in some order

Display—display output

Predefined process—process previously speci-
fied

Internal Storage—stored in memory
Termination—start or stop point

Delay—wait

Decision—decision or a branch

Data—I/O to or from a process

Manual Input—Data entry from a form

Manual Operation—operation to be done manu-
ally

Connector —join flow lines

Off page connector —continue on another page
Summing Junction—Logical AND

OR—Logical OR

Sequenti al Access storage—stored on magnetic
tape

Stored Data—general data storage

Magnetic Disk—I/O from magnetic disk

Direct access storage—storing on hard disk
Flow lines—indicates direction of flow
Extract—split process

Card—1I/O from a punched card

direction of flow in a flowchart must be from top to bottom and left to right, and (3) The rel-
evant symbols must be used while drawing a flowchart. While preparing the flowchart, the
sequence, selection or iterative structures may be used wherever required. Figure 2.3 shows
the sequence, selection and iteration structures.

We see that in a sequence, the steps are executed in linear order one after the other. In a
selection operation, the step to be executed next is based on a decision taken. If the condition
is true (yes) a different path is followed than if the condition evaluates to false (no). In case
of iterative operation, a condition is checked. Based upon the result of this conditional check,
true or false, different paths are followed. Either the next step in the sequence is executed or
the control goes back to one of the already executed steps to make a loop.

Here, we will illustrate the method to draw flowchart, by discussing three different ex-
amples. To draw the flowcharts, relevant boxes are used and are connected via flow lines. The
flowchart for the examples is shown in Figure 2.4.

Is condition true

Sequence

Iteration

Selection

Figure 2.3 | Control structures in flowchart

2.30 Computer Fundamentals

Start

Start

A4

SUM =0
1=0

P

A

4
i Read A, B ;

v

A\ 4
I=1+1
SUM = SUM +1

A 4
| MAX=A| |MAX=B|

[0) (o]

Is MAX > C

Yes
o / pintSUM
Print MAX Print C
A4
Stop

Figure 2.4 | Examples of flowchart

1. The first flowchart computes the product of any two numbers and gives the result. The
flowchart is a simple sequence of steps to be performed in a sequential order.

2. The second flowchart compares three numbers and finds the maximum of the three
numbers. This flowchart uses selection. In this flowchart, decision is taken based upon
a condition, which decides the next path to be followed, i.e. If A is greater than B then
the true (Yes) path is followed else the false (No) path is followed. Another decision is
again made while comparing MAX with C.

3. The third flowchart finds the sum of first 100 integers. Here, iteration (loop) is per-
formed so that some steps are executed repetitively until they fulfill some condition to
exit from the repetition. In the decision box, the value of I is compared with 100. If it is
false (No), a loop is created which breaks when the condition becomes true (Yes).

Flowcharts have their own benefits; however, they have some limitations too. A complex
and long flowchart may run into multiple pages, which becomes difficult to understand and
follow. Moreover, updating a flowchart with the changing requirements is a challenging job.

2.17 Pseudo Code

Pseudo code consists of short, readable and formally-styled English language used for explain-
ing an algorithm. Pseudo code does not include details like variable declarations, subroutines etc.
Pseudo code is a short-hand way of describing a computer program. Using pseudo code, it is eas-
ier for a programmer or a non-programmer to understand the general working of the program,
since it is not based on any programming language. It is used to give a sketch of the structure
of the program, before the actual coding. It uses the structured constructs of the programming

Data Representation and Programming Fundamentals 2.3 1

language but is not machine-readable. Pseudo code cannot be compiled or executed. Thus, no
standard for the syntax of pseudo code exists. For writing the pseudo code, the programmer is
not required to know the programming language in which the pseudo code will be implemented
later.

2.17.1 Preparing a Pseudo Code

1. Pseudo code is written using structured English.

2. Inapseudo code, some terms are commonly used to represent the various actions. For
example, for inputting data the terms may be (INPUT, GET, READ), for outputting
data (OUTPUT, PRINT, DISPLAY), for calculations (COMPUTE, CALCULATE), for in-
crementing (INCREMENT), in addition to words like ADD, SUBTRACT, INITIALIZE
used for addition, subtraction, and initialization, respectively.

3. The control structures—sequence, selection, and iteration are also used while writing the
pseudo code.

4. Figure 2.5 shows the different pseudo code structures. The sequence structure is simply
a sequence of steps to be executed in linear order. There are two main selection con-
structs—if-statement and case statement. In the if-statement, if the condition is true then
the THEN part is executed otherwise the ELSE part is executed. There can be variations
of the if-statement also, like there may not be any ELSE part or there may be nested ifs.
The case statement is used where there are a number of conditions to be checked. In a
case statement, depending on the value of the expression, one of the conditions is true,
for which the corresponding statements are executed. If no match for the expression oc-
curs, then the OTHERS option which is also the default option, is executed.

Sten | IF (condition) THEN WHILE (condition)
te
P Statement(s) 1 Statement 1
ELSE Statement 2
Step 2
Statement(s) 2
ENDIF :
Step 3
END
IF (condition) THEN DO
Statement(s) 1 Statement 1
ENDIF Statement 2
CASE expression of :
Sequence
Condition] : statement1 WHILE (condition)
Condition2 : statement2
Iteration
condition : statement N
OTHERS: default statement(s)

Selection

Figure 2.5 | Control structures for pseudo code

2.32 Computer Fundamentals

READ values of A, B, C
IF A is greater than B THEN

ASSIGN A to MAX
ELSE
ASSIGN B to MAX
READ values of A and B IF MAX is greater than C THEN
COMPUTE C by multiplying A with B BLs é’RINT MAX is greatest
PRINT the result C PRINT C is greatest
STOP STOP
(1) Find product of any two numbers (i1) Find maximum of any three numbers
INITIALIZE SUM to zero
INIT IALIZE I to zero
DO WHILE (I less than 100)
INCREMENT [
ADD I to SUM and store in SUM
PRINT SUM
STOP

(iii) Find sum of first 100 integers

Figure 2.6 | Examples of pseudo code

5. WHILE and DO-WHILE are the two iterative statements. The WHILE loop and the
DO-WHILE loop, both execute while the condition is true. However, in a WHILE loop
the condition is checked at the start of the loop, whereas, in a DO-WHILE loop the con-
dition is checked at the end of the loop. So the DO-WHILE loop executes at least once
even if the condition is false when the loop is entered.

In Figure 2.6, the pseudo code is written for the same three tasks for which the flowchart was
shown in the previous section. The three tasks are—(i) compute the product of any two num-
bers, (ii) find the maximum of any three numbers, and (iii) find the sum of first 100 integers.

A pseudo code is easily translated into a programming language. But, as there are no de-
fined standards for writing a pseudo code, programmers may use their own style for writing
the pseudo code, which can be easily understood. Generally, programmers prefer to write
pseudo code instead of flowcharts.

Difference between Algorithm, Flowchart, and Pseudo Code: An algorithm is a sequence
of instructions used to solve a particular problem. Flowchart and Pseudo code are tools to
document and represent the algorithm. In other words, an algorithm can be represented using
a flowchart or a pseudo code. Flowchart is a graphical representation of the algorithm. Pseudo
code is a readable, formally styled English like language representation of the algorithm. Both
flowchart and pseudo code use structured constructs of the programming language for rep-
resentation. The user does not require the knowledge of a programming language to write or
understand a flowchart or a pseudo code.

Data Representation and Programming Fundamentals 2.33

2.18 Programming Paradigms

The word “paradigm” means an example that serves as a pattern or a model. Programming
paradigms are the different patterns and models for writing a program. The programming
paradigms may differ in terms of the basic idea which relates to the program computation.
Broadly, programming paradigms can be classified as follows:

1. Structured Programming,
2. Object-Oriented Programming (OOP), and
3. Aspect-Oriented Programming (AOP). AOP is a new programming paradigm.

Earlier, the unstructured style of programming was used, where all actions of a small and
simple program were defined within a single program only. It is difficult to write and un-
derstand a long and complex program using unstructured programming. The unstructured
style of programming is not followed nowadays.

2.18.1 Structured Programming

1. Structured programming involves building of programs using small modules. The
modules are easy to read and write.

2. Instructured programming, the problem to be solved is broken down into small tasks that
can be written independently. Once written, the small tasks are combined together to form
the complete task.

3. Structured programming can be performed in two ways— Procedural Programming and
Modular Programming (Figure 2.7).

4. Procedural Programming requires a given task to be divided into smaller procedures,
functions or subroutines. A procedural program is largely a single file consisting of
many procedures and functions and a function named main (). A procedure or function
performs a specific task. The function main () integrates the procedures and functions

File
@-funcl()
@ } . @
func2(File 2 (Module 1)
o © o5,
_'froc 0 File 1 (Main module) }{
5:::: @ main () ®
main {z====)
—-ofuncl()()-] file2. funcl (); File 3 (Module 2)
y - file3. procl (); T
teproc1(); procl (); R ~ |z
-?unczg-) yls} proe10)
@
(i) Procedural programming (ii) Modular programming

Figure 2.7 | Structured programming

2.34 Computer Fundamentals

7.

by making calls to them, in an order that implements the functionality of the program.
When a procedure or function is called, the execution control jumps to the called proce-
dure or function, the procedure or function is executed, and after execution the control
comes back to the calling procedure or function.

Modular Programming requires breaking down of a program into a group of files,
where each file consists of a program that can be executed independently. In a modular
program, the problem is divided into different independent but related tasks. For each
identified task, a separate program (module) is written, which is a program file that can
be executed independently. The different files of the program are integrated using a
main program file. The main program file invokes the other files in an order that fulfills
the functionality of the problem.

In structured programming, the approach to develop the software is process-centric or
procedural. The software is divided into procedures or modules, based on the overall
functionality of the software. As a result, the procedures and modules become tightly
interwoven and interdependent. Thus, they are not re-usable.

C, COBOL and Pascal are examples of structured programming languages.

2.18.2 Object-Oriented Programming (OOP)

OOP focuses on developing the software based on their component objects. The components
interact with each other to provide the functionality of the software. Object-oriented program-
ming differs from procedural programming. In OOP the software is broken into components
not based on their functionality, but based on the components or parts of the software. Each
component consists of data and the methods that operate on the data. The components are
complete by themselves and are re-usable. The terms that are commonly associated with ob-
ject-oriented programming are as follows:

1.

2.

Class is the basic building block in object-oriented programming. A class consists of
data attributes and methods that operate on the data defined in the class.

Object is a runtime instance of the class. An object has a state, defined behavior and a
unique identity. The state of the object is represented by the data defined in the class.
The methods defined in the class represent object behavior. A class is a template for a
set of objects that share common data attributes and common behavior.

Abstraction, Encapsulation, Inheritance and Polymorphism are the unique features of object-
oriented software.

Abstraction allows dealing with the complexity of the object. Abstraction allows picking
out the relevant details of the object, and ignoring the non-essential details. Encapsula-
tion is a way of implementing abstraction.

Encapsulation means information hiding. The encapsulation feature of object-oriented
software hides the data defined in the class. Encapsulation separates implementation
of the class from its interface. The interaction with the class is through the interface
provided by the set of methods defined in the class. This separation of interface from its
implementation allows changes to be made in the class without affecting its interface.

The Inheritance feature of object-oriented software allows a new class, called the derived
class, to be derived from an already existing class known as the base class. The derived

Data Representation and Programming Fundamentals 2.35

class (subclass) inherits all data and methods of the base class (super class). It may over-
ride some or all of the data and methods of the base class or add its own new data and
methods.

7. Polymorphism means, many forms. It refers to an entity changing its form depending on
the circumstances. It allows different objects to respond to the same message in different
ways. This feature increases the flexibility of the program by allowing the appropriate
method to be invoked depending on the object executing the method invocation call.

8. C++and Java are object-oriented programming languages.

2.18.3 Aspect-Oriented Programming (AOP)

Aspect-oriented programming is a new programming paradigm that handles the crosscutting
concerns of the software. The crosscutting concerns are the global concerns like logging, authen-
tication, security, performance, etc., that do not fit into a single module or related modules. In
OOQOP, the business logic or core concern is encapsulated in well-defined classes. However, the
code for implementing crosscutting concerns is intertwined with a number of related classes or
modules and gets scattered in the different classes of the software.

AOP is a new paradigm that focuses on the issue of handling crosscutting concerns at the
programming language level. It helps the programmer in cleanly separating the core concerns
and the crosscutting concerns of the software. AOP introduces a new modular unit called
“aspect” that encapsulates the functionality of the crosscutting concerns. Aspects of a system
are independent elements that can be changed, inserted or removed at compile time, and
even reused without affecting the rest of system. Aspects are similar to the classes of object
oriented programs; however, they implement the crosscutting concerns. At compilation time,
the classes of object oriented programs and the aspects are combined into a final executable
form using an “aspect weaver”.

* Aspect] and AspectC are examples of aspect-oriented programming languages.

After having selected a suitable programming paradigm for the program to be written, the
coding of the logic of a program has to be done in a computer programming language. For
the purposes of coding, the programmer checks the requirements and suitability of the task,
and selects from among the programming languages available for the selected programming
paradigm.

Characteristics of a Good Program: A program written using any of the programming
language must have certain characteristics, which makes it a good program. Some of the key
characteristics of a good program are as follows:

1. The program should be well-written so that it is easily readable and structured.

2. The program should not have hard-coded input values. This implies that it should not
be written to work for a particular input value, but must be a general program (also
called generic program) that accepts input from the user.

3. The program should also be well-documented so that later the author or any other pro-
grammer can understand the program.

4. Since new and better operating systems keep coming up, a program must be designed
to be portable, i.e. with minimum dependence on a particular operating system.

A program comprising of the above features is generally characterized as a good program.

2.36 Computer Fundamentals

2.19 Problem Formulation and Problem Solving

2.19.1 Problem Solving

Problem solving is an innovative process for finding solutions to problems. The process
involves the following sequence of steps to be followed:

1. Identify the problem

Collect information to improve the understanding about the problem
Chart down the set of solutions

Select the best solution

Implement the best solution

Assess the results

7. If the results are satisfactory, stop else investigate the alternative solutions

AN N

The commonly used problem-solving tools are algorithms, flowcharts and pseudo code which
have been discussed in this chapter.

2.19.2 Problem Formulation

Problem formulation is the methodology of describing the problem and the results by stat-
ing the requirements and objectives that are required to solve the problem using a computer
program. The objectives are defined in terms of:

1. Input and its characteristics
2. Expected Output and its characteristics
3. Relationship between the input & the desired output

Example: Problem formulation to find the largest of three numbers
Requirement: To find and print the largest of three numbers

Input: Three numbers

Characteristics of input: Numbers

Output: One of the three input that is large

Characteristics of output: Number

Relationship between Input and Output: Output will be one of the three numbers given as
input.

2.20 Summary

1. Face value of a digit is the digit located at that place. The position value of digit is
(basepesior). The number is the sum of (face value * baseP>si") of all the digits.

2. In computer science, decimal number system (base 10), binary number system (base 2),

octal number system (base 8), and hexadecimal number system (base 16) concern us.

Decimal number system has 10 digits—0 to 9, the maximum digit being 9.

Binary number system has two digits—0 and 1.

Octal number system consists of eight digits—0 to 7, the maximum digit being 7.

Hexadecimal number system has sixteen digits—0to 9, A, B, C, D, E, F, where (A is for 10,

Bis for 11, C—12, D—13, E—14, F—15). The maximum digitis F, i.e., 15.

AL

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Data Representation and Programming Fundamentals 2.37

Conwversion of octal or hexadecimal number to binary or vice-versa uses the shortcut method.
Three and four bits of a binary number correspond to an octal digit and hexadecimal
digit, respectively.

Binary arithmetic operations are the binary addition, subtraction, multiplication and divi-
sion operations performed on the binary numbers.

For any number in base r, there is r’s complement and r—1’s complement. For example, binary
numbers can be represented in 1’s complement and 2’s complement.

Sign bit is the most significant bit. The sign bit is 1 and 0 for a positive number and nega-
tive number, respectively.

Position of binary point in a binary number is represented using Fixed Point Number
Representation and Floating Point Number Representation.

In fixed point representation, the positive integer binary number is represented with sign
bit 0 and magnitude as positive binary number. The negative integer is represented in
signed magnitude representation, signed 1’s complement representation and signed 2’s
complement representation.

Addition of two signed binary numbers requires the positive number to be represented as
binary number and negative number to be represented in 2’s complement form.
Floating point representation has two parts—Mantissa and Exponent. Mantissa is a signed
fixed point number and exponent shows the position of the binary point in the man-
tissa.

Binary Coding schemes represent data in a binary form in the computer. ASCII, EBCDIC,
and Unicode are the most commonly used binary coding scheme.

EBCDIC is a 8-bit code with 256 different representations of characters. It is mainly used
in mainframe computers.

ASCII-8 is a 8-bit code and allows 256 characters to be represented. ASCII is widely to
represent data in computers, internally.

Unicode is a universal character encoding standard for the representation of text in
multi-lingual environments. UTE-8 is the most commonly used encoding.

Logic gate is the hardware electronic circuit that operates on input signals to produce
output signal. AND, OR, NOT, NAND, NOR, XOR and XNOR are some of the logic
gates.

Program is a set of instructions that instruct the computer about the way a task is to be
performed.

Program development life cycle consists of —analyze problem to select a solution, write
algorithm, draw flowchart and write pseudo code for the selected solution, write
program code in a programming language, remove syntax and semantic errors,
and install successfully tested program. Also, document the program to make pro-
gram maintenance easy.

Algorithm is an ordered sequence of finite, well-defined, unambiguous instructions for
completing a task.

Control structures specify the statements that are to be executed and the order of the
statements that have to be executed. Sequential, selection, and iteration are three kinds
of control structures.

Flowchart is a diagrammatic representation of the logic for solving a task. Flowchart is a
tool to document and represent the algorithm. Flowchart is drawn using the flowchart
symbols.

2.38

25.

26.
27.

28.
29.

30.

31.

32.

Computer Fundamentals

Pseudo code consists of short, readable and formally-styled English language which
is used to explain and represent an algorithm. There is no standard syntax for writ-
ing the pseudo code, though some terms are commonly used in a pseudo code.

A pseudo code is easily translated into a programming language.

In structured programming, the given problem is broken down into smaller tasks based
on their functionality. The individual tasks can be written independently, and later
combined together to form the complete task. A structured program can be procedural
or modular.

A procedural program is largely a single file consisting of many procedures and functions.
A modular program is a group of files, where each file consists of a program that can be
executed independently.

In OOP, software is broken into components based on the components of the software.
Class is the basic building block. Object is a runtime instance of class. Abstraction, en-
capsulation, inheritance, and polymorphism are the unique features of object-oriented
software.

AOP is a new paradigm that focuses on the handling of crosscutting concerns like
logging, authentication, security, and performance, at the programming language
level. The crosscutting concerns are defined in a new modularization unit called as-
pect.

A good program is readable, structured, generic, well-documented and portable.

Exercise Questions

Conceptual Questions and Answers

1.

Convert the following decimal numbers into binary, octal and hexadecimal.

24 g. .98
47 h. .29
675 i. 24.14
89 j. 16.1
34.24 k. 22.33
150.64 1. 24.14

(24),, = (11000), = (30), = (18),,

(47),,= (101111), = (57),= (2F),,

(675),, = (1010100011), = (1243), = (2A3),,

(89),, = (10110001),= (131), = (59),,

(34.24),, = (100010.00111), = (42.1727), = (22.3D70),,
(150.64) , = (10010110.1010), = (226.5075), = (96.A70A),,
(.98),, = (-1111),= (.7656), = (FAE1),,

(:29),, = (.0100),= (.2243), = (4A3D),,

(24.14), = (11000.0010), = (30.1075), = (18.23D),,
(16.1),, = (10000.0001),= (20.063), = (10.199),,
(22.33),, = (10110.0101), = (26.250), =(16.547),,
(24.14), = (11000.0010), = (30.1075), = (18.23D),,

AT F® e AN TR me an o

Conwvert the following binary numbers into decimal numbers.
a. 110000111 c. 1001111
b. 110011 d. 11000001

o o

me a0 oo

Convert the following octal numbers into decimal numbers.

aooe

aooe

1100110.1110
11110.0000
01001.0101
1010.10101

(110000111), = (391),,
(110011),= (51),,
(1001111),= (79),,
(11000001),= (193),,
(1100110.1110),= (102.087),,
(11110.0000), = (30.0),,

234
36

456
217

(234), = (156),,
(36), = (30),,

(456), = (302),,
(217), = (143),,

Data Representation and Programming Fundamentals

—_

=T

s e

S e

11000011.111
11001.1101
100.111
101.0111

(01001.0101),= (9.312),,
(1010.10101), = (10.65),,
(11000011.111), = (195.875),,
(11001.1101),= (25.8125),,
(100.111),= (4.875),,
(101.0111),= (5.4375),,

25.33
65.34
34.56
267.12

(25.33), = (21.4218),
(65.34), = (53.4375),
(34.56), = (28.7187),,
(267.12), = (183.1562),,

Convert the following hexadecimal numbers into decimal numbers.

oo oe

Convert the following binary into octal.

aooe

P T an o

E16

389

2AB
FF

(E16),, = (3606),,
(389),, = (905),,
(2AB),, = (683),,
(FF),, = (255),,

1100011
110011001100
100111100
110000011

(1100011), = (143),
(110011001100), = (6314),
(100111100),= (474),
(110000011),= (603),

T e

Convert the following binary into hexadecimal.

aooe

11000011111
1100110011
100111100
1100000100

T oo

T oo

ER N

E4.16
2A.1B
23.89
AC.BD

(E4.16),, = (228.0859),,
(2A.1B),, = (42.1054),,
(23.89),, = (35.5351),,
(AC.BD),, =(172.7382),,

110011011
1111000
0010101
101010101

(110011011),= (633),
(1111000), = (170),
(0010101), = (025),
(101010101),= (525),

11001101110
111100000
010010101
101010101

2.39

2.40 Computer Fundamentals

10.

11.

12.

13.

(11000011111), = (61F),,
(1100110011),= (333),,
(100111100),= (13C),,
(1100000100), = (304),,

oo oe

Convert the following octal into binary.

25
65
34
267

(25), = (010101),
(65), = (110101),
(34), = (011100),
(267),=(010110111),

P T ano

Convert the following hexadecimal into binary.

Al
2AB
239
CCD

(A1),= (10100001),
(2AB), = (001010101011),
(239),, = (001000111001),

(CCD), = (110011001101),

ap T an o

S e

Perform binary addition on the following binary numbers.

a. 111100, 011011
b. 1001, 1111

a. 1919111
b. 11000

Perform binary subtraction on the following binary numbers.

a. 111000, 011010
b. 1111, 1001
c. 0110, 0010
d. 1100, 1010

Find 1's complement of the following binary numbers.

a. 11000011111
b. 1100110011

a. 00111100000
b. 0011001100

Find 2’s complement of the following binary numbers.

a. 11000011111
b. 1100110011

a. 00111100001
b. 0011001101

c.
d.
c.
d.

an an

an an

ER I

e ke

o op

(11001101110),= (66E),,
(111100000),= (1E0),,
(010010101), = (095),,
(101010101), = (155),,

45
71
150
111

(4

7
15
11

5), = (100101),
1), = (111001),

0), = (001101000),
1), = (001001001),

45C
71D
150
AAA

(45C),, = (010001011100),
(71D),, = (011100011101),
(150),, = (000101010000),
(AAA),, = (101010101010),

0110, 1100
1100, 1010

10010
10110

11110
0110
0100
0010

100111100
1100000100

011000011
0011111011

100111100
1100000100

011000100
0011111100

Represent the following as 8-bit numbers in (a) Signed Magnitude representation, (b) Signed 1's comple-
ment representation, and (c) Signed 2’s complement representation

(i) -22 (i) 55

(iv)

67

Data Representation and Programming Fundamentals

a. (i) 10010110
b. (i) 01101001
c. (i) 01101010

(i) 10110111
(i) 01001000
(i) 01001001

(ifi) 10100010
(ifi) 01011101
(ifi) 01011110

(iv) 11000011
(iv) 00111100
(iv) 00111101

14. Represent the following as 8-bit numbers in Fixed Point number representation.

15.

16.

17.

a. +22
b. +55

a. 00010110
b. 00110111

Perform binary addition of the following numbers.
(+7) +(=9)

(+3) +(+15)

(-12) +(+15)

(—14) + (+25)

-2 = (11111110),
+18 = (00010010),
+3 = (00000011),

+11 = (00001011),

N TR N TR

Perform binary subtraction of the following numbers.

(+7) —(-19)
(+13) - (+15)
(-12) - (+15)
(=14) - (+25)

+26 = (00011010),
-2=(11111110),

27 =(11100101),
-39 =(11011001),

aooe

a0 oe

+34
+67

00100010
01000011

an an

(-7) +(=7)

(-9) +(-23)
(-2) +(+4)

(+34) +(-2)
~14 = (11110010),
~32 = (11100000)
+2 = (00000010),
+32 = (00100000)

2

RN X e

2

(=7) =(=7)

(-9) —(-23)

(-2) —(+4)

(+34) - (-2)

0= (00000000),
+14 = (00001110),
—6=(11111010),
+36 = (00100100),

Sq@ e

S e

Represent the following binary numbers in Floating Point number representation.

a. 1100.011
110.001

b
a. 1100011 x 2+
b. .110001 x 2

Additional Questions

1. What is the significance of the base of number?

® NSOl N

c. 11.110
d. 1010.011

c. 11110x 27
d. .1010011 x 2*

2.41

Explain the significance of the face value and position value of a number. Give an example.

What is the position value of a digit?
The decimal number system is in base
The binary number system is in base

The octal number system is in base

The hexadecimal number system is in base

Give the valid digits in the number systems.

a. decimal
b. binary

c. octal
d. hexadecimal

2.42 Computer Fundamentals

9. Write the largest digit in the number systems.

a. decimal c. octal

b. binary d. hexadecimal
10. How many valid digits are there in the number systems?

a. decimal c. octal

b. binary d. hexadecimal

11. Show the octal, binary and hexadecimal equivalent of the decimal number 11.
12. Why are binary coding schemes needed?
13. List any four commonly used binary coding schemes.

14. What number of bits is used to represent the following codes?

a. EBCDIC c. ASCII-8
b. ASCII-7
15. How many characters can be represented in the following codes?
a. EBCDIC c. ASCII-8
b. ASCII-7
16. How is Unicode different from the other Binary coding schemes? (Hint: multilingual, no. of
characters)

17. What is UTF-8 character encoding?
18. Name the basic logic gates.
19. Draw the symbols of the following logic gates.

a. AND e. NOR
b. OR f. XOR
c. NOT g. XNOR
d. NAND

20. Write the truth table of the following logic gates.
a. AND e. NOR
b. OR f. XOR
c. NOT g. XNOR
d. NAND

21. Write the algebraic function of the following logic gates.
a. AND e. NOR
b. OR f. XOR
c. NOT g. XNOR
d. NAND

22. Define a program.

23. Explain the program development life cycle in detail.

24. What is the difference between syntax error and semantic error?
25. Define syntax error.

26. Define semantic error.

27. What is the purpose of program maintenance?

28. Define algorithm.

29. What are control structures?

30.
31.

32.
33.

34.

35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

45.
46.
47.
48.
49.
50.
51.

52.

Data Representation and Programming Fundamentals

Name the three kinds of control structures.
State the purpose of each of the control structures:

a. Sequence c. Iteration
b. Selection

Define flowchart.
Draw the flowchart symbol for the following.

a. Process d. Connector
b. Decision e. Magnetic Disk
c. Document

State the meaning of the following flowchart symbols.

a. Process d. Connector
b. Decision e. Magnetic Disk
c. Document f. Flow lines

Draw the control structures (Sequence, Selection and Iteration) for the flowchart.
Define pseudo code.

Write the pseudo code control (structures sequence, selection, and iteration).
What is the difference between WHILE and DO-WHILE statements?

Name the different programming paradigms.

What is modular programming?

What is procedural programming?

Name two procedural programming languages.

What are the key features of OOP?

Define:

a. Class d. Encapsulation
b. Object e. Inheritance

c. Abstraction f. Polymorphism
How is static binding different from dynamic binding in OOP?

Name two object-oriented programming languages.
How is AOP different from OOP?

Define an aspect.

Name two aspect-oriented programming languages.
Explain the characteristics of a good program.

Give full form of the following abbreviations:

a. EBCDIC c. UTF
b. MSB d. ASCII

Write short notes on:

Decimal Number System

Binary Number System

Octal Number System

Hexadecimal Number System
Binary arithmetic operations

1’s complement of Binary number
2’s complement of Binary number
Fixed Point Number Representation

S o an o

2.43

2.44

53.

54.

55.

56.

57.
58.
59.
60.
61.
62.
63.
64.
65.

Computer Fundamentals

Floating Point Number Representation
Addition of signed binary numbers
Subtraction of signed binary numbers
Binary Coding schemes

. Logic Gates
ASCII coding scheme
EBCDIC coding scheme
Unicode character encoding

vTosg o ET e

Give differences between the following;:

1’s complement and 2’s complement of Binary number

ASCII coding scheme and EBCDIC coding scheme

Decimal Number System and Binary Number System

Octal Number System and Hexadecimal Number System

Fixed Point Number Representation and Floating Point Number Representation

caop o

Give full form for the following abbreviations:
a. AOP b. OOP
Write short notes on:

Program Development Life Cycle
Algorithm

Control structures

Flowchart

Pseudo code

Structured programming
Object-Oriented Programming
Aspect-Oriented Programming
Characteristics of a good program

N AR

Give differences between the following;:

Flowchart and Pseudo code

Algorithm, Flowchart and Pseudo code

Modular Programming and Procedural Programming
Selection and Iteration

OOP and AOP

What is the relation between the 1’s complement and 2’s complement of a binary number?

©ap o

In addition to the digits, a number may contain a and
What is a sign bit?

Which bit is considered as a sign bit when representing a number?

What is the value of sign bit for a positive number?

What is the value of sign bit for a negative number?

What is the range of data that can be represented using an 8-bit signed number?
What is the range of data that can be represented using an 8-bit unsigned number?

representation and representation are the two ways of representing the position
of the binary point in the register.

Data Representation and Programming Fundamentals 2.45

Programming Exercise

1. Write the algorithm, draw a flowchart, and write pseudo code for the following;:

a.

@m0 a0 o

-

To find the sum of square root of any three numbers.

To find the sum of first 100 integers.

To find the sum of all even numbers till 100.

To find the sum of all odd numbers till 100.

To find the sum of any five integers.

To find the factorial of a number n. Hint: n! = n(n-1)(n-2)....3.2.1

To find the first n numbers in a Fibonacci series. Hint: f (0) =0, f(1) =1, f(n) =f (n-1) +f(n-2)
To find the sum of digits of a number. (For example, for number 345 find 3+4+5)

To check whether a number is prime or not.

To convert the temperature from Fahrenheit to Celsius. Hint: C= (5/9)*(F-32)

This page is intentionally left blank

PART - 1i

BASICS OF C PROGRAMMING

This page is intentionally left blank

DATA TYPES, VARIABLES
AND CONSTANTS

Learning Objectives

In this chapter, you will learn about:

= Various features of C language

= Various C’s standards

= (C’s character set

= |dentifiers and Keywords

= Rules to write identifier names in C

= Data types, type qualifiers and type modifiers
= Declaration statement

= Difference between declaration and definition
= Length and Range of various data types

= |-value and r-value concept

= Variables and constants

= C(Classification of constants

= Structure of a C program

= Process of compiling and executing a C program
= Writing simple C programs

= Using printf and scanf functions

= Use of sizeof operator

3.4 Basics of C Programming

3.1 Introduction

C is a general-purpose, block-structured, procedural, case-sensitive, free-flow, portable and
high-level programming language developed by Dennis Ritchie at the Bell Telephone Labora-
tories. The selection of ‘C” as the name of a programming language seems to be an odd choice
but it was named C because it evolved from earlier languages Basic Combined Programming
Language (BCPL) and B.

In 1967, Martin Richards developed BCPL for writing system software (i.e. operating
systems and compilers). Ken Thompson in 1970 developed a stripped version of BCPL and
named it B. The language B was used to create early versions of UNIX operating system. Both
the languages BCPL and B were “typeless’, and every data object occupied one word in the
memory. In 1972, Dennis Ritchie developed C programming language by retaining the impor-
tant features of BCPL and B programming languages and adding data types and other power-
ful features to the retained feature set of BCPL and B. The language C was initially designed
as a system implementation language for developing system software for the UNIX operat-
ing system. Thus, it was widely known as the development language of the UNIX operating
system. However, after its popularity, it has spread over many other platforms and is used
for creating many other applications in addition to the system software. Thus, nowadays, C
is known as a general-purpose language and not only as a system implementation language.

3.2 C Standards

The rapid expansion of C to various platforms led to many variations that were similar but
were often incompatible. This was a serious problem for programmers who wanted to develop
code that could run on several platforms. This problem led to the realization of the need for a
standard. This section lists the formulation of various C standards in the chronological order:

3.2.1 Kernighan & Ritchie (K&R) C Standard

The first edition of ‘The C Programming Language” book by Brian Kernighan and Dennis
Ritchie was published in 1978. This book was one of the most successful computer science
books and has served as an informal standard for the C language for many years. This infor-
mal standard was known as ‘K&R C'.

3.2.2 ANSI C/Standard C/C89 Standard

In 1983, a technical committee was created under the American National Standards Institute
(ANSI) committee to establish a standard specification of C. In 1989, the standard proposed
by the committee was formally approved and is often referred to as ANSI C, Standard C or
sometimes C89.

3.2.3 ISO C/C90 Standard

In 1990, the International Organization for Standardization (ISO) adopted the ANSI C stan-
dard after minor modifications. This version of the standard is called ISO C or sometimes C90.

3.2.4 (€99 Standard

After the adoption of the ANSI standard, the C language specifications remained unchanged
for sometime, whereas the language C++ continued to evolve. To accommodate this evolu-
tion of C++, a new standard of C language that corrected some details of ANSI C standard

Data Types, Variables and Constants 3.5

and added more extensive support to it was introduced in 1995. The standard was published
in 1999 and is known as C99. The C99 standard has not been widely adopted and is not sup-
ported by many popular C compilers.

The text and questions in this book are in accordance to ANSI/ISO standards and are
e tested on Borland Turbo C (TC) 3.0 compiler for DOS, Borland TC 4.5 compiler for Windows
and Microsoft VC++ 6.0 compiler for Windows.

3.3 Learning Programming Language and Natural Language:
An Analogy

Writing a C program is analogous to writing an essay. Recall all the stages through which you
have undergone in the process of learning how to write an essay in English. Your teacher must
have told you:

1. How to create words from letters.

2. How to form sentences using words and grammar.
3. How to organize sentences and create paragraphs.
4. How to arrange paragraphs and write an essay.

In this book, you will learn about:

1. How to create identifiers using the characters available in the character set of C lan-
guage. This is analogous to creating words in a natural language.

2. How to use identifiers to form expressions, which can be further converted to state-
ments, the smallest logical unit of a program. Forming a statement is analogous to form-
ing a sentence.

3. How to use statements to write functions. Writing a function is analogous to writing a

paragraph.

4. How to use functions to create a program. This is analogous to creating an essay from
paragraphs.

The above learning objectives are organized in this book as follows:

1. Creating identifier names: Chapter 1

2. Creating expressions and statements: ~Chapters 4 and 5

3. Creating functions: Chapter 8

Since, I do not want to restrain you from writing programs till Chapter 8, I will make some
forward jumps in the flow of learning C programming language. I will introduce you to pro-
gram writing in this chapter itself, but if something does not seem obvious, I advise you to be
a bit patient. The concepts will be clearer when you go through the first few chapters and will
be clear by the end of Chapter 8.

3.4 C Character Set

A character set defines the valid characters that can be used in a source program or interpreted
when a program is running. The set of characters that can be used to write a source program
is called a source character set, and the set of characters available when the program is being
executed is called an execution character set. It is possible that the source character set is
different from the execution character set, but in most of the implementations of C language,
the two character sets are identical.

3.6 Basics of C Programming

The basic source character set of C language includes:

1. Letters:

a. Uppercase letters: A, B, C, ..., Z

b. Lowercase letters: a, b, ¢, ..., z

Digits: 0,1, 2, ..., 9

Special characters:, . :;! " " # % "&* () {}[]<>1\/_~etc
White space characters:

Blank space character

b. Horizontal tab space character
c. Carriage return

d. New line character

e. Form feed character

W N

o

3.5 Identifiers and Keywords

If you know C’s source character set, the next step is to write identifiers. This is analogous to
writing words in a natural language.

3.5.1 Identifiers

An identifier refers to the name of an object. It can be a variable name, a label name, a function
name, a typedef name, a macro name or a macro parameter, a tag or a member of a structure,
a union or an enumeration.

The syntactic rules to write an identifier name in C are as follows:

1. Identifier name in C can have letters, digits or underscores.

2. The first character of an identifier name must be a letter (either uppercase or lowercase)
or an underscore. The first character of an identifier name cannot be a digit.

3. No special character (except underscore), blank space and comma can be used in an
identifier name.

4. Keywords or reserved words cannot form a valid identifier name.

5. The maximum number of characters allowed in an identifier name is compiler depen-
dent, but the limit imposed by all the compilers provides enough flexibility to create
meaningful identifier names.

The following identifier names are valid in C:
Student_Name, StudentName, student_name, studentl, _student

The following identifier names are not valid in C:
Student Name (due to blank space), Name&Rollno (due to special character &), 1st_student
(first character being a digit), for (for being a keyword).

It is always advisable to create meaningful identifier names. Meaningful identifier names are
e easier to read and increase the maintainability of a program. For example, it is better to create
an identifier name as student_name instead of snam.

Data Types, Variables and Constants 3.7

3.5.2 Keywords

Keyword is a reserved word that has a particular meaning in the programming language. The
meaning of a keyword is predefined. A keyword cannot be used as an identifier name in C
language. There are 32 keywords available in C. Table 3.1 gives a set of keywords present in
C language.

Table 3.1 | List of keywords in C

S.No | Keyword S.No | Keyword S.No | Keyword S.No | Keyword
1. auto 9. double 17. |int 25. | struct

2. break 10. |else 18. | long 26. | switch

3. case 11. | enum 19. | register 27. | typedef

4. char 12. extern 20. return 28. union

5. const 13. | float 21. | short 29. | unsigned
6. continue 14. | for 22. | signed 30. | void

7. default 15. | goto 23. | sizeof 31. | volatile

8. do 16. |if 24. | static 32. | while

3.6 Declaration Statement

If you have learnt how to create an identifier name, you should know that every identifier
(except label name) needs to be declared before it is used.

An identifier can be declared by making use of the declaration statement. The role of a
declaration statement is to introduce the name of an identifier along with its data type (or just
type) to the compiler before its use. The general form of a declaration statement is:

[storage_class_specifier][type_qualifier'|type_modifier*] type® identifier [=value[....]];

The terms enclosed within square brackets (i.e. []) are optional and might not be present in a
declaration statement. The type, identifier and the terminating semicolon (shown in bold) are
the mandatory parts of a declaration statement.

The following declaration statements? are valid in C:

int variable; (type int and identifier name variable present)

static int variable; (Storage class specifier static, type int and identifier name variable
present)

static unsigned int variable; (Storage class specifier static, type modifier unsigned, type int and
identifier name variable present)

static const unsigned int variable; (Storage class specifier static, type qualifier const, type modifier
unsigned, type int and identifier name variable present)

int variable=20; (type int, identifier name variable and value 20 present)

int a=20, b=I0; (type int, identifier name a and its initial value 20 present, an-

other identifier name b and its initial value Il present®)

" Refer Section 3.8.1 for a description on type qualifiers.

* Refer Section 3.8.2 for a description on type modifiers.

§ Refer Section 3.7 for a description on types.

I These are actually definition statements. Refer Section 3.9 for a description on declaration and definition.

3.8 Basics of C Programming

’gg A declaration statement in which more than one identifier is declared is known as a short-
hand declaration statement. For example, int a=2[, b=I0; is a shorthand declaration statement.
The corresponding longhand declaration statements equivalent to this shorthand declara-
tion statement are int a=20; int b=I0.. It is important to note that shorthand declaration can only
be used to declare identifiers of the same type. In no way can it be used to declare identifiers
of different types, e.g. int a=I0, float b=2.3; is an invalid statement.

3.7 Data Types

If you know how to write a declaration statement, you would probably know that the declara-
tion statement is used to tell the data type (or just type) of an identifier to the compiler before
its use.

Data type or just type is one of the most important attributes of an identifier. It determines
the possible values that an identifier can have and the valid operations that can be applied
on it.

In C language, data types are broadly classified as:

1. Basic data types (primitive data types)
2. Derived data types
3. User-defined data types

3.7.1 Basic/Primitive Data Types

The five basic data types and their corresponding keywords available in C are:
1. Character (char)

2. Integer (int)

3. Single-precision floating point (float)

4. Double-precision floating point (double)

5. No value available (void)

3.7.2 Derived Data Types
These data types are derived from the basic data types. Derived data types available in C are:

1. Array type e.g. char[], int[], etc.
2. Pointer type e.g. char®, int*, etc.
3. Function type e.g. int(intint), float(int), etc.

3.7.3 User-defined Data Types

The C language provides flexibility to the user to create new data types. These newly created
data types are called user-defined data types. The user-defined data types in C can be created
by using:

Data Types, Variables and Constants 3.9

—_

Structure
Union
3. Enumeration

N

3.8 Type Qualifiers and Type Modifiers

The declaration statement can optionally have type qualifiers or type modifiers or both.

3.8.1 Type Qualifiers

A type qualifier neither affects the range of values nor the arithmetic properties of the de-
clared object. They are used to indicate the special properties of data within an object. Two
type qualifiers available in C are:

1. const™ qualifier: Declaring an object const announces that its value will not be changed
during the execution of a program.

2. volatile qualifier: volatile qualifier announces that the object has some special properties
relevant to optimization.

3.8.2 Type Modifiers

A type modifier modifies the base type to yield a new type. It modifies the range# and the
arithmetic properties of the base type. The type modifiers and the corresponding keywords
available in C are:

1. Signed (signed)

2. Unsigned (unsigned)
3. Short (short)

4. Long (long)

3.9 Difference Between Declaration and Definition

It is very important to know the difference between the terms declaration and definition.
Declaration only introduces the name of an identifier along with its type to the compiler be-
fore it is used. During declaration, no memory space is allocated to an identifier. Definition
of an identifier means the declaration of an identifier plus reservation of space for it in the
memory. The amount of memory space reserved for an identifier depends upon the data type
of the identifier. Identifiers of different data types take different amounts of memory space.
The memory space required by an identifier also depends upon the compiler and the work-
ing environment used. Table 3.2 lists the length of various data types in DOS and Windows
environment.

* Refer Section 3.11.2.2 for a description on const qualifier.
Refer Section 3.9 for a description on range modification by type modifiers.

3.10 Basics of C Programming

Table 3.2 | Data types and their memory requirements
S.No | Data type Base/Modified | TURBO C 3.0/DOS MS VC++ 6.0/ WINDOWS
1. char Base 1 Byte 1 Byte
2. int Base 2 Bytes 4 Bytes
3. float Base 4 Bytes 4 Bytes
4. double Base 8 Bytes 8 Bytes
5. signed (data type 1, 2) Modified (same as data type 1, 2) | (same as data type 1, 2)
6. unsigned (data type 1, 2) | Modified (same as data type 1, 2) | (same as data type 1, 2)
7. short int Modified 2 Bytes 2 Bytes
8. long int Modified 4 Bytes 4 Bytes
9. long float Modified 8 Bytes 8 Bytes
10. | long double Modified 10 Bytes 8 Bytes
11. | void Base Object of void type cannot be created

The data type determines the possible values that an identifier can have. The range of a
data type depends upon the length of the data type. Table 3.3 lists the range of various data
types in DOS and Windows environment.

Table 3.3 | Range of various data types

S.No | Data type TURBO C 3.0/DOS MS VC++ 6.0/WINDOWS

1. char -128 to 127 -128 to 127

2. int -32768 to 32767 -2,147,483,648 to 2,147,483,647

3. float 34*10%to3.4*10% 3.4%10%to03.4*10%

4, double 1.7*107°%% to 1.7 * 1038 1.7 * 107 to 1.7 * 10%%

5. signed (data type 1, 2) Same as 1, 2 as by default data | Same as 1, 2 as by default data
types are signed types are signed

6. unsigned char 0 to 255 0 to 255

7. unsigned int 0 to 65535 0 to 4,294,967,295

8. unsigned long int 0 to 4,294,967,295 0 to 4,294,967,295

9. short int -32768 to 32767 -32768 to 32767

10. long double 3.4*10%%2 t0 1.1 * 1032 1.7*10°% to0 1.7 * 103

Despite the big difference between the terms declaration and definition, the word declaration
is commonly used in place of definition. All the statements written in Section 3.6 are actually
definition statements, but I have referred to them as declarations because at that point I just
wanted to focus on the name and the type of an identifier.

The statement int variable=20; mentioned in Section 3.6 is actually a definition statement be-
cause it allocates 2 bytes (or 4 bytes) to variahle somewhere in the memory (say, at memory loca-
tion with address 2000) and initializes it with the value 20. The memory allocation is purely random
(i.e. any free memory location will be randomly allocated). This is illustrated in Figure 3.1.

Data Types, Variables and Constants 3.11

Data Store (Memory) variable
20
Addresses @ ——» 2000 (Memory locations are addressed, like houses are

addressed, for e.g. 2000 is a memory address)

Figure 3.1 | Allocation of memory to variable

If int variable; is a definition statement, then how can I declare variable?

If you want to actually declare variable, write extern int variable;. extern is a storage class
specifier. The keyword extern provides a method for declaring a variable without defining it.
The extern declaration does not allocate the memory.

3.10 Data Object, L-value and R-value

You must have known by this time that upon definition, an identifier is allocated some space
in memory depending upon its data type and the working environment. This memory al-
location gives rise to two important concepts known as the 1-value concept and the r-value
concept. These concepts are described below.

3.10.1 Data Object

Data object is a term that is used to specify the region of data storage that is used to hold val-
ues. Once an identifier is allocated memory space, it will be known as a data object.

3.10.2 L-value

L-value is a data object locator. It is an expression that locates an object. In Figure 3.1, variable
is a sort of name given to the memory location 2000. variable here refers to l-value,” an object
locator. The term l-value can be further categorized as:

1. Modifiable I-value: A modifiable l-value is an expression that refers to an object that
can be accessed and legally changed in the memory.

2. Non-modifiable l-value: A non-modifiable l-value refers to an object that can be accessed
but cannot be changed in the memory. 11

1 in I-value stands for ‘left’; this means that the I-value could legally stand on the left side of
an assignment operator.

3.10.3 R-value

R-value refers to ‘read value’. In Figure 3.1, variable has an r-value* 20.

11 Refer Section 3.11.2.2 to learn how to make an l-value non-modifiable.

3.12 Basics of C Programming

r in r-value stands for ‘right’ or ‘read’; this means that if an identifier name appears on the
right side of an assignment operator it refers to the r-value.

Consider Figure 3.1 and the expression variable=variable+20. variable on the left side of the as-
signment operator refers to the l-value. variable on the right side of the assignment operator (in
bold) refers to the r-value. variable appearing on the right side refers to 20. The number 20 is
added to 20 and the value of expression is 40 (r-value). This outcome (40) is assigned to variable
on the left side of the assignment operator, which signifies I-value.” The I-value variable locates
the memory location where this value is to be placed, i.e. at 2000. After the evaluation of the
expression variable=variable+2[, the contents of the memory are shown in Figure 3.2.

Data Store (Memory) variable
40
Addresses — 2000

Figure 3.2 | Contents of memory location 2000 after the evaluation of expression variable=variable+20

Remember it as:
The I-value refers to the location value, i.e. the location of the object, and the r-value
refers to the read value, i.e. the value of the object.

3.11 Variables and Constants

Variables and constants are two most commonly used terms in a programming language.

3.11.1 Variables

A variable is an entity whose value can vary (i.e. change) during the execution of a program.
The value of a variable can be changed because it has a modifiable l-value. Since it has a modi-
fiable I-value, it can be placed on the left side of the assignment operator. Note that only the
entities that have modifiable I-values can be placed on the left side of the assignment operator.
The variable can also be placed on the right side of the assignment operator. Hence, it has an
r-value too. Thus, a variable has both an 1-value and an r-value.

3.11.2 Constants

A constant is an entity whose value remains the same throughout the execution of a program.
It cannot be placed on the left side of the assignment operator because it does not have a
modifiable l-value. It can only be placed on the right side of the assignment operator. Thus, a
constant has an r-value only. Constants are classified as:

1.
2.
3.

Data Types, Variables and Constants 3.13

Literal constants
Qualified constants
Symbolic constants

3.11.2.1 Literal Constant

Literal constant or just literal denotes a fixed value, which may be an integer, floating point
number, character or a string. The type of literal constant is determined by its value. Literal
constants are of the following types:

1.

2.
3.
4

Integer literal constant
Floating point literal constant
Character literal constant
String literal constant

3.11.2.1.1 Integer Literal Constant

Integer literal constants are integer values like -1, 2, §, etc. The rules for writing integer literal
constants are as follows:

1.
2.
3.

An integer literal constant must have at least one digit.

It should not have any decimal point.

It can be either positive or negative. If no sign precedes an integer literal constant, then
it is assumed to be positive.

No special characters (even underscore) and blank spaces are allowed within an integer
literal constant.

If an integer literal constant starts with [, then it is assumed to be in an octal number
system, e.g. 023 is a valid integer literal constant, which means 23 is in an octal number
system and is equivalent to 13 in the decimal number system.

If an integer literal constant starts with Ix or X, then it is assumed to be in a hexadecimal
number system, e.g. Ix23 or 0X23 is a valid integer literal constant, which means 23 is in
a hexadecimal number system and is equivalent to 3a in the decimal number system.
The size of the integer literal constant can be modified by using a length modifier. The
length modifier can be a suffix character |, L, u, U, f or F. If the integer literal constant is
terminated with | or L then it is assumed to be long. If it is terminated with v or I, then it
is assumed to be an unsigned integer, e.g. 23l is a long integer and 23u is an unsigned integer.
The length modifier f or F can only be used with a floating point literal constant and not
with an integer literal constant.

3.11.2.1.2 Floating Point Literal Constant

Floating point literal constants are values like -23., 12.8, -1.8el2, etc. Floating point literal con-
stants can be written in a fractional form or in an exponential form. The rules for writing
floating point literal constants in a fractional form are as follows:

1.
2.
3.

A fractional floating point literal constant must have at least one digit.

It should have a decimal point.

It can be either positive or negative. If no sign precedes a floating point literal constant,
then it is assumed to be positive.

3.14 Basics of C Programming

4. No special characters (even underscore) and blank spaces are allowed within a floating
point literal constant.

5. A floating point literal constant by default is assumed to be of type double, e.g. the type
of 2343 is double.

6. The size of the floating point literal constant can be modified by using the length modi-
fier for F, i.e. if 2340 is written as 23.4af or 23.43F, then it is considered to be of type float
instead of double.

The following are valid floating point literal constants in a fractional form:
-2.3,12.523, 2.3f, 12.5F
The rules for writing floating point literal constants in an exponential form are as follows:

1. A floating point literal constant in an exponential form has two parts: the mantissa part

and the exponent part. Both parts are separated by & or E.

The mantissa can be either positive or negative. The default sign is positive.

The mantissa part should have at least one digit.

The mantissa part can have a decimal point but it is not mandatory.

The exponent part must have at least one digit. It can be either positive or negative. The

default sign is positive.

The exponent part cannot have a decimal point.

7. No special characters (even underscore) and blank spaces are allowed within the man-
tissa part and the exponent part.

Ol W

o

The following are valid floating point literal constants in the exponential form:

-2.3k2, -2.3e-12, Zel0 (i.e. equivalent to 2107

3.11.2.1.3 Character Literal Constant

A character literal constant can have one or at most two characters enclosed within single
quotes e.g. ‘N, ‘@, ‘\’, etc. Character literal constants are classified as:

1. Printable character literal constants
2. Non-printable character literal constants

3.11.2.1.3.1 Printable Character Literal Constant

All characters of source character set except quotation mark, backslash and new line character
when enclosed within single quotes form a printable character literal constant. The following
are examples of printable character literal constants: ‘A", ‘#, ‘B’.

3.11.2.1.3.2 Non-printable Character Literal Constant

Non-printable character literal constants are represented with the help of escape sequences.
An escape sequence consists of a backward slash (i.e. \) followed by a character and both
enclosed within single quotes. An escape sequence is treated as a single character. It can be
usedS in a string like any other printable character. A list of the escape sequences available in
Cis given in Table 3.4.

S$SRefer Programs 3-7 and 3-9 for learning the usage of the escape sequences ‘\t" and ‘\n’.

Data Types, Variables and Constants 3.15

Table 3.4 | List of escape sequences

S.No | Escape sequence | Character value Action on output device
1. \' Single quotation mark Prints’
2. \" Double quotation mark (") | Prints "
3. \? Question mark (?) Prints ?
4. \\ Backslash character (\) Prints \
5. \a Alert Alerts by generating a beep
6. \b Backspace Moves the cursor one position to the left of its
current position
7. \f Form feed Moves the cursor to the beginning of next page
\n New line Moves the cursor to the beginning of the next line
\r Carriage return Moves the cursor to the beginning of the current
line
10. |\t Horizontal tab Moves the cursor to the next horizontal tab stop
11, [\ Vertical tab Vertical tab
12. |\D Null character Prints nothing

3.11.2.1.4 String Literal Constant

A string literal constant consists of a sequence of characters (possibly an escape sequence)
enclosed within double quotes. Each string literal constant is implicitly terminated by a null
character (i.e. \[). Hence, the number of bytes occupied by a string literal constant is one more
than the number of characters present in the string. The additional byte is occupied by the ter-
minating null character. Thus, the empty string (i.e. “”) occupies one byte in the memory due
to the presence of the terminating null character. However, the terminating null character is
not counted while determining the length of a string. Therefore, the length of string “ABL” is 3
although it occupies 4 bytes in the memory.

3.11.2.2 Qualified Constants

Qualified constants are created by using const qualifier. The following statement creates a
qualified character constant named a:

const char a="A":

Consider a definition statement int a=I0;. This statement allocates 2 bytes (or 4 bytes, in case
of Windows environment) to a somewhere in the memory and initializes it with the value
I0. The memory location can be thought of as a transparent box in which Il has been placed.
It is possible to modify the value of a. This means that it is possible to open the box and

3.16 Basics of C Programming

change the value placed in it. Now, consider the statement const int a=I0;. The usage of the const
qualifier places a lock on the box after placing the value Il in it. Since the box is transparent, it is
possible to see (i.e. read) the value placed within the box, but it is not possible to modify the
value within the box as it is locked. This is depicted in Figure 3.3.

== eentll

2000 <«—— Address ——— 2000
(a) int a=10; (b) const int a=10;

Figure 3.3 | Use of const qualifier

Since qualified constants are placed in the memory, they have l-value. However, as it is not
possible to modify them, this means that they do not have a modifiable l-value, i.e. they have
a non-modifiable l-value.

3.11.2.3 Symbolic Constants

Symbolic constants are created with the help of the define preprocessor directive. For example:
#define Pl 314124 defines Pl as a symbolic constant with value 31424. Each symbolic constant is
replaced by its actual value during the preprocessing stage.

3.12 Structure of a C Program
In general, a C program is composed of the following sections:

1. Section 1: Preprocessor directives
2. Section 2: Global declarations
3. Section 3: Functions

Sections 1 and 2 are optional, i.e. they may or may not be present in a C program but
Section 3 is mandatory. Section 3 should always be present in a C program. Thus, it can be
said that ‘A C program is made up of functions’. Look at the simple program in Program 3-1.

Line | Prog 3-1.c Output window

I'] //Comment: First C program Hello Readers!!
7 | #include<stdio.h>
3 | main()
411
5

printf(“Hello Readers!!");

6|}
Program 3-1 | A simple program that prints “Hello Readers!!"

Data Types, Variables and Constants 3.17

Program 3-1 on execution™ outputs Hello Readers!l. The contents of Program 3-1 are described
below.

3.12.1 Comments

Line 1: is a comment. Comments are used to convey a message and to increase the readability
of a program. They are not processed by the compiler. There are two types of comments:

1. Single-line comment
2. Multi-line comment

3.12.1.1 Single-line Comment

A single-line comment starts with two forward slashes (i.e. /) and is automatically termi-
nated with the end of line. Line 1 of Program 3-1 is a single-line comment.

3.12.1.2 Multi-line Comment

A multi-line comment starts with /* and terminates with */. A multi-line comment is used
when multiple lines of text are to be commented.

3.12.2 Sectionl: Preprocessor Directive Section

Line 2: #finclude<stdin.h> is a preprocessor directive statement. The preprocessor directive section
is optional but you will find it in most of the C programs. In the initial phase of learning, just
remember that #includesstdioh> is a preprocessor directive statement, which includes standard
input/output (i.e. stdio) header (.h) file. This file is to be included if standard input/output
functions like printf or scanf are to be used in a program.

The following points must be remembered while writing preprocessor directives:

1. The preprocessor directive always starts with a pound symbol (i.e. #).

2. The pound symbol # should be the first non-white space character in a line.

3. The preprocessor directive is terminated with a new line character and not with a semi-
colon.

4. Preprocessor directives are executed before the compiler compiles the source code.
These will change the source code, usually to suit the operating environment (pragma
directive) or to add the code (include directive) that will be required by the calls to library
functions.

3.12.3 Section 2: Global Declaration Section

The global declaration section is optional. This section is not present in Program 3-1. In the
initial phase of learning, I am not going to use global declarations.

** Refer Section 3.13 to learn how to execute a C program.

3.18 Basics of C Programming

3.12.4 Section 3: Functions Section

This section is mandatory and must be present in a C program. This section can have one or
more functions. A function named main is always required. The functions section (Lines 3-6)
in Program 3-1 consists of only one function, i.e. main function. Every function consists of two
parts:

1. Header of the function
2. Body of the function

3.12.4.1 Header of a Function
The general form of the header of a function is

[return_type] function_name([argument _list])

The terms enclosed within square brackets are optional and might not be present in the
function header. Since the name of a function is an identifier name, all the rules discussed
in Section 3.5.1 for writing an identifier name are applicable for writing the function name.
Line 3 in Program 3-1 specifies the header of the function main, in which the return_type and the
argument_list are not present. The name of the function is main and it is a valid identifier name.
In the initial phase of learning, I will write functions without specifying a return type and an
argument list.

Writing a function without specifying a return type may lead to the generation of a warning
message during the compilation but we can ignore it for the time being.

3.12.4.2 Body of a Function

The body of a function consists of a set of statements enclosed within curly brackets com-
monly known as braces. Lines 4-6 in Program 3-1 form the body of main function. The body of
a function consists of a set of statements. Statements are of two types:

1. Non-executable statements: For example: declaration statement
2. Executable statements: For example: printf function call statement

It is possible that no statement is present within the braces. In such a case, the program
produces no output on execution. However, if there are statements written within the braces,
remember that non-executable statements can only come prior to an executable statement, i.e.
first non-executable statements are written and then executable statements are written. The
body of main function in Program 3-1 has only one executable statement, i.e. printf function call
statement.

3.13 Executing a C Program

If you have finished writing the code listed in Program 3-1, follow these steps to execute your
program:

Data Types, Variables and Constants 3.19

1. Save program: with .c extension. This will help you in retrieving the code in case the
program crashes upon execution.

2. Compile program: Compilation can be done by going to the Compile Menu of Borland
TC 3.0 and invoking the compile option available in that menu. The shortcut for this
step is the Alt+F9 key. If working with Borland Turbo C 4.5, go to the Project Menu and
invoke the compile option. It has the same shortcut key. In Microsoft Visual C++ 6.0, go
to the Build Menu and invoke the compile option. The shortcut for this is the Ctrl+F7
key. After the compilation, look for errors and warnings. Warnings will not prevent you
from executing the program and if there are any, just ignore them for the time being.
If there are errors, check that you have written the code properly. There should be no
typing mistake and all the characters listed in Program 3-1 should be present as such. If
there is no error, Congrats!! you can now execute your program.

3. Execute/run program: Execution can be done by going to the Run Menu and invoking
the run option in Borland Turbo C 3.0. The shortcut key is Ctrl+F9. In Borland Turbo
C 4.5, the program can be executed by going to the Debug Menu and invoking the run
option. It has the same shortcut key. In Microsoft Visual C++ 6.0, go to the Build Menu
and invoke the run option. The shortcut key for this is Ctrl+F5.

4. See the output: If working with Borland Turbo C 3.0, to see the output go to the user
screen. This can be done by going to the Window Menu and invoking the user screen
option. The shortcut for this step is Alt+F5. In Borland TC 4.5 and Microsoft Visual C++
6.0, the output screen will automatically pop-up.

3.14 Compilation and Linking process

Source Code

H

I L program

A
Preprocessing
Preprocessed code

Compiler

ik

Assembly code

Assembler

I

(bject code
v

Linker
Library functions

Executable Code

Input data

Qutput

Flowchart depicting the compilation and linking process

3.20

Basics of C Programming

The steps in the execution of a C program are as follows:

1.
2.

=

Write the program (source code).

Preprocessing is the first stage of the compilation process. The preprocessor accepts
source code as input and interprets preprocessor directives denoted by #. It removes
comments and empty lines in the program.

The C compiler translates the source code into assembly code (machine understandable
code).

The assembler creates the object code.

The linker combines the source code with the library functions referred within it or
functions defined in other source files along with main(), to create an executable file.
External variable references are resolved here.

Executes the program by giving data input.

3.15 More Programs for Startup

If you have successfully executed Program 3-1 and have gained some confidence, look at
some more programs (Programs 3-2 to 3-11). Type the programs as such and compile them.
If there are errors, find out the errors and rectify them. After rectification, recompile the pro-
grams and execute them to get a practical feel of all the concepts that we have discussed

till now.
Line | Prog 3-2.c Output window

|| //Comment: Case Sensitivity Linker error
2 | #include<stdio.h> Reasons:
3 | Main() e CLanguage is case sensitive
4 { e Main is not same as main
a int valid_name=20; What to do?
b printf("%ad", valid_name); e Replace Main by main in line 3 and then recheck
71}

Program 3-2 | A program that emphasizes the case sensitivity of C language

Line | Prog 3-3.c Output window
I'| //Comment: Identifier Compilation error
2 | #include<stdio.h> Reason:
3 | main() e st student is not a valid identifier name
411 What to do?
2 int Ist_student=20; e Replace it everywhere by student! and then recheck
B printf("%ad", Ist_student);
71}

Program 3-3 | A program that emphasizes the rules to write an identifier name

Data Types, Variables and Constants 3.21

Line | Prog 3-4.c Output window
I'| //Comment: Keyword Compilation error
2 | #include<stdio.h> Reason:
3 | main() e ifis a keyword. It cannot be used as an identifier name
411 What to do?
af intif=20; e Replace it everywhere by a valid identifier name and then
B printf(“%d", if); recheck
71}

Program 3-4 | A program that emphasizes the fact that keyword is not a valid identifier name

Line | Prog 3-5.c Output window
I'| //Comment: Semicolon is Terminator | Compilation error
2 | #include<stdio.h> Reasons:
3 | main() e A statement in C is terminated with a semicolon
411 e In line 5, declaration (actually definition) statement is not ter-
g int valid_name=20 minated with a semicolon. This leads to the compilation error
B printf("%d", valid_name); What to do?
713 e Place semicolon at end of line 5 and then recheck

Program 3-5 | A program that emphasizes the fact that statements in C are terminated with a semicolon

Prog 3-6.c Output window

//Comment: printf function use The value is 20
#include<stdio.h>
main()

int valid_name=20;
printf("The value is %d", valid_name);

}

Program 3-6 | A program that illustrates the use of printf function to print the value of an identifier

Program 3-6 upon execution outputs The value is 2. The definition statement in line 5 defines
an identifier valid_name and initializes it with the value 2[. This value is printed with the help of
printf function in line 6. The rules for using printf function are as follows:

1.
2.

3.

L

The name of printf function should be in lowercase.

The inputs (or arguments) to printf function are given within round or circular brackets,
popularly called parentheses.

At least one input is required, and the first input to printf function should always be a
string literal or an identifier of type char®.

The inputs are separated by commas.

If values of identifiers are to be printed with the help of printf function, the first input to
printf function should be a format string. For example, in Program 3-6, in line 6, “The value
is Y%od” is a format string. A format string consists of format specifiers. For example, line 6

3.22 Basics of C Programming

in Program 3-6 consists of a format specifier %d. A format specifier specifies the format
according to which the printing will be done. There is a different format specifier for
each data type. Format specifier is written as %x, where x is a character code listed in

Table 3.5.
Table 3.5 | Format specifiers in C language
S.No | Data type |x |Format |Remark
specifier
1. |char c |%c Single character
2. |int i | %i Signed integer
3. [|int d [%d Signed integer in decimal number system
4. unsignedint o | %o Unsigned integer in octal number system
5. unsignedint [u | %u Unsigned integer in decimal number system
6. unsignedint x| %x Unsigned integer in hexadecimal number system
7. |unsignedint | X [%KX Unsigned integer in hexadecimal number system
8. |longint Id [%ld Signed long
9. |shortint hd | %hd Signed short
10. | unsigned long | lu | %lu Unsigned long
11. | unsigned short | hu | %hu Unsigned short
12. | float £ %f Signed single precision float in form of [-]dddd.dddd e.g. 22.25, -12.34
13. | float e | %e Singed single precision float in form of [-]d.dddde[+/-]ddd e.g. ~2.3e4, 275e-7
14. | float E | %t Same as %e, with E for exponent
15. | float g | %g Singed value in either e or f form, based on given value and precision
16. | float 6 | %G Same as %g, with E for exponent if e format is used
17. | double It | %lf Signed double-precision float
18. | String type s | %s String
19. | Pointertype [p | %p Pointer
Line | Prog 3-7.c Output window
I'{ //Comment: scanf function use Enter number 12
2 | #include<stdio.h> The number entered is |2
3 | main() Remarks:
411 e \t' present in line 6 is an escape sequence and is
a| intnumber; used to create tab-spacing
G| printf("Enter number\t"); e Observe the tab-space between the string “Enter
T| scanf("%d" Gnumber); number” and the value 12 in the output window
81 printf("The number entered is %d" number);
g1}

Program 3-7 | A program that illustrates the use of scanf function

Data Types, Variables and Constants 3.23

Program 3-7 upon execution prompts the user to enter a value of number. In response, the
user enters the value |2. The entered value is then printed by the printf function. The scanf func-
tion is used to take the input just like the printf function is used to print the output. The rules
for using scanf function are as follows:

1. The name of stanf function should be in lowercase.

2. The inputs (or arguments) to scanf function are given within parentheses.

3. The first input to scanf function should always be a format string or an identifier of type

char®. Ideally, the format string of a scanf function should only consist of blank separated

format specifiers.

The inputs are separated by commas.

5. The inputs following the first input should denote l-values. For example, in line 7 of
Program 3-7, the second input is Gnumber. The symbol & is address-of operator and is
used to find the I-value of its operand. Thus, Gnumber refers to the l-value.

L

The scanf function takes inputs from the user according to the available format specifiers in
the specified format string and stores the entered values at the specified I-values. Thus, the
scanf function specified in line 7 of Program 3-7 takes an integer value (due to %d format speci-
fier) and stores it at the l-value (i.e. Gnumber).

Line | Prog 3-8.c Output window

//Comment: Add two numbers Enter numbers 1213
#include<stdio.h> The sum is 25
main()
{
int number!, numberZ, number3;
printf(“Enter numbers\t");
scanf("%d %d" Gnumber!, Gnumber?);
numberd = numberl+number?;
printf("The sum is %d" number3);

OO0 &~ N —

o

0]}

Program 3-8 | A program to add two numbers entered by the user

Line | Prog 3-9.c Output window
|'| //Comment: Swap two numbers Enter numbers 1213
2 | #include<stdio.h> Numbers before swap 12 13
3 | main() Numbers after swap [3 12
414
a| int numberl, numberZ, numberd;

(Contd...)

3.24 Basics of C Programming

Remark:

e \n' present in line 8 is an escape sequence
and is used to place a new line character in
the output

61 printf("Enter numbers\t");

T| scanf("%d %d" Gnumber!, Enumber?);

8 printf(“"Numbers before swap %d %d\n" number!, number?);
91 numberd=numberl;

0| numberl=numberZ;

1] numberZ=number3;

121 printf("Numbers after swap %d %d\n" numberl, number2);
131}

Program 3-9 | A program to swap two numbers

Line | Prog 3-10.c Output window

Enter numbers 12 13
Numbers before swap 12 13
Numbers after swap 13 12

|| //Comment: Swap two numbers without using a third number
2 | #include<stdio.h>

3 | main()

414

3| int numberl, numberZ;
B printf("Enter numbers\t");

T| scanf("%d %d" Gnumber!, Gnumber?);

81 printf(“"Numbers befare swap %d %d\n" number!, number2);
g numberZ=numberl+numberZ;

10 numberf=numberZ-number;

If numberZ=numberZ-numberl;

12 printf(“Numbers after swap %d %d\n" numberl, number?2);
131}

Program 3-10 | A program to swap two numbers without using a third number

Line | Prog 3-11.c Output window
I'| //Comment: Usage of sizeof operator Character takes | byte in memary
2 | #include<stdio.h> Integer takes 2 bytes in memary
3 | main() Float takes 4 bytes in memory
4{ Long takes 4 bytes in memory
a| printf("Character takes %d byte in memory\n", sizeof(char)); | Double takes 8 bytes in memory
6] printf("Integer takes %d bytes in memory\n", sizeof(int)); | Remark:
T| printf("Float takes %d bytes in memory\n", sizeof(float)); e The output of the program may vary
81 printf("Long takes %d bytes in memaory\n", sizeof(long)); with the compiler and the working
91 printf("Double takes %d bytes in memory\n", sizeof(double)); environment
o3

Program 3-11 | A program to find the size of various data types

Program 3-11 makes the use of sizeof operator to find the size of data types. The specified out-
put is the result of execution using Borland Turbo C 3.0/4.5. If it is executed using MS VC++
6.0, the size of integer would be 4 bytes.

3.16
1.

10.
11.
12.
13.

14.
15.
16.

17

Data Types, Variables and Constants 3.25

Summary
Cis a general-purpose, block-structured, procedural, case-sensitive, free-flow, portable,
high-level language.

There are various C standards: Kernighan & Ritchie (K&R) C standard; ANSI C/Stan-
dard C/C89 standard; ISO C/C90 standard; C99 standard.

ANSI C and ISO C are the most popular C standards. Most popular compilers nowa-
days are ANSI compliant.

C character set consists of letters, digits, special characters and white space characters.

Identifier refers to the name of an object. It can be a variable name, a label name, a
typedef name, a macro name, name of a structure, a union or an enumeration.

Keyword cannot form a valid identifier name. The meaning of keyword is predefined
and cannot be changed.

Every identifier (except label name) needs to be declared before its use. They can be
declared by using a declaration statement.

The declaration statement introduces the name of an identifier along with its data type
to the compiler before its use.

Data types are categorized as: basic data types, derived data types and user-defined
data types.

The declaration statement can optionally have type qualifiers or type modifiers or both.
A type qualifier does not modify the type.
A type modifier modifies the base type to yield a new type.

Declaration is different from definition in the sense that definition in addition to decla-
ration allocates the memory to an identifier.

Variables have both 1-value and r-value.

Constants do not have a modifiable I-value. They have an r-value only.

C program is made up of functions.

. C program should have at least one function. A function named main is always required.

Exercise Questions

Conceptual Questions and Answers

1.

What method is adopted for locating includable source files in ANSI specifications?

For including source files, include directive is used. The include directive can be used in two forms:
#include<name-of-file>
or

#include"name-of-file"

#include<name-of-file> searches the prespecified list of directories (names of include directories can
be specified in IDE* settings) for the source file (whose name is given within angular brackets),
and text embeds the entire content of the source file in place of itself. If the file is not found there,
it will show an error ‘Unable to include ‘name-of-file”.

3.26 Basics of C Programming

25

2.

5.

#include"name-of-file" searches the file first in the current working directory. If this search is not
supported or if the search fails, this directive is reprocessed as if it reads #include<name-of-file>, i.e.
search will be carried out in the prespecified list of directories. If the search still fails, it will
show the error “Unable to include ‘name-of-file”.

IDE stands for Integrated Development Environment. All the tools (like text editor, prepro-
cessor, compiler and linker) required for developing programs are integrated into one pack-
age, known as IDE.

Is there any difference that arises if double quotes, instead of angular brackets are used for including stan-
dard header files?

If double quotes instead of angular brackets are used for the inclusion of standard header files,
the search space unnecessarily increases (because in addition to the prespecified list of directo-
ries, the search will unnecessarily be carried out first in the current working directory) and thus,
the time required for the inclusion will be more.

Under what circumstances should the use of quotes be preferred over the use of angular brackets for the
inclusion of header files, and under what circumstances is the use of angular brackets beneficial?

Self-created or user-defined header files should be included with double quotes because
inclusion with double quotes makes files to be searched first in the current working directory
(where the user has kept self-created header files) and then in the prespecified list of directo-
ries. If standard header files are to be included, angular brackets should be used because the
standard header files are present in the prespecified list of directories and there is no use of
searching them in the current working directory. Usage of double quotes for including standard
header files will also work, but will take more time.

‘C is a case-sensitive language’. Therefore, does it create any difference if instead of #include<stdinh>,
#include<STDI0.H> is used? If no, why?

‘C is a case-sensitive language’ means that the C constructs are case sensitive (i.e. depends upon
whether uppercase (like A) or lowercase (like a) is used). The name of the source file specified for
inclusion is not a C construct. Whether it will be case sensitive or not depends upon the work-
ing environment. In case of DOS and Windows environment, file names are case insensitive. In
Unix and Linux environment, file names are case sensitive. So, if working in DOS or Windows
environment, <3IDI0H> can be used instead of <stdio.h>, it does not create any difference. But, in case
of Unix or Linux environment, it does create a difference.

A program file contains the following five lines of the source code:
#include<stdio.h>
main()

printf("Hello World");

}

When the program is compiled, the compiler shows the number of lines compiled to be greater than 5, why
it is happening so?

During the preprocessing stage, include preprocessor directive (the first line of source code)
searches the file stdin.h in the prespecified list of directories and if the header file is found, it
(the include directive) is replaced by the entire content of the header file. If the included header
file contains another include directive, it will also be processed. This processing is carried out
recursively till either no include directive remains or till maximum translation limit is achieved
(ISO specifies the nesting level of include files to be at most 15). Hence, one line of source code

Data Types, Variables and Constants 3.27

gets replaced by multiple lines of the header file. During the compilation stage, these added
lines will also be compiled; hence, the compiler shows the number of lines compiled to be
greater than five.
6. Isinta; actually a declaration or a definition?

The role of the declaration statement is to introduce the name of an identifier along with its data
type (or just type) to the compiler before its use. During the declaration, no memory space is al-
located to an identifier. Since int a; statement in addition to introducing the name and the type of
identifier a, allocates memory to 8, it actually becomes a definition.

7. How are negative integral numbers stored in C?

Internally, numbers are stored in the form of bits (i.e. binary digits) and are represented in the
binary number system. In the binary number system, negative numbers are not stored directly.
To store both the sign and magnitude of a number, some convention for storage has to be used.
In C language, the convention used for storing an integral® number is sign-two’s complement
representation.

What is sign-two’s complement representation?

1. For every integral number, the Most Significant Bit (MSB) contains the sign, and the rest of
the bits contain the magnitude.

2. If the sign is positive, the MSB is 0 and if the sign is negative, the MSB is 1.

3. If the MSB contains bit 0 (i.e. a positive number), the magnitude is in the direct binary rep-
resentation.

4. If the MSB contains bit 1 (i.e. a negative number), the magnitude is not in the direct binary
representation. The magnitude is stored in two’s complement form. To get the value of
the magnitude, take two’s complement of the stored magnitude.

How to find two’s complement of a binary number?

Two’s complement of a binary number is its one’s complement plus one.

One’s complement of a binary number can be determined by negating every bit (i.e. by
converting 0’s to 1’s and 1’s to 0s). For e.g. One’s complement of 100101 is 011010 (i.e. every
bit is negated). Two’s complement of 100101 is its one’s complement plus one (i.e. 011010 + 1
= 011011). The following tables show how 200 and —200 are stored in memory:

Storage representation of 200:

Sign Magnitude (MSB is 0, so direct binary representation of 200)

Bit16 I gyt | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit

MSB | 5 | a|w3|2|unflw|lols|7el|s|al|s]|2]1
0 ololoflololo]Jo|l1[1]loflof1]lo]|]o]o

Storage representation of —200:

Sign Magnitude (MSB is 1, so magnitude is two’s complement representation of 200)

Bit16 1 i | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit [Bit [Bit | Bit | Bit | Bit

MSB s |u||u|ufw|o|s]|7]e]s5|4a][3]2]:1
1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0

,@f Integral type consists of integer type and character type.

3.28

Basics of C Programming

8. How does the maximum value that an integral data type supports depends upon its size?

Consider integer data type, taking 2 bytes, i.e. 16 bits in memory. The maximum value it can
have is as follows:

Sign Magnitude (MSB is 0, so direct binary representation)

Bit16 I gyt | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit

MSB | 5| a2l s| 76|55 4al|3]|2]1
0 R R

Sign Bit = 0 (means number is positive), magnitude is maximum (as all the magnitude bits have
maximum value, i.e. 1). The stored number is 32767 (i.e. 2'5-1).

Now, consider character data type (taking 1 byte, i.e. 8 bits in memory). The maximum value it
can have is 27-1 = 127. This can be shown as follows:

Sign Magnitude (MSB is 0, so direct binary representation)

Bit 8

MSB Bit 7 Bit 6 Bit5 Bit 4 Bit 3 Bit 2 Bit 1
0 1 1 1 1 1 1 1

This shows that the maximum value that an integral type can take is directly in rela-
tion to its size. That is why, if an integer variable is not able to store a value (e.g. 70000), we
switch to long integer because long integer takes 32 bits in memory. Thirty-one bits will be
used for storage of magnitude. Hence, the maximum value (2147483647, i.e. 2%'-1) of long inte-
ger is far greater than the maximum value of integer (32767, i.e. 2'-1), which has only 15 bits
for the storage of magnitude.

Data type as such does not take any space in memory. Objects associated with the defined
identifiers take memory space according to their data types. Wherever it is referred in the
text that data type takes some space in memory, it implies that the object of the specified
data type takes that much memory space.

9.

What will the output of the following program segment be? (Assume that integer data type takes 2 bytes of
memory.)

#include<stdio.h>
main()
{
int a=32768;
printf("%d" a);
}
The output that this program snippet prints is ~32768. This can be well understood if one knows
how integers are stored in the memory.
If integer type takes 2 bytes in the memory, 32767 is stored as follows:

Data Types, Variables and Constants 3.29

Sign Magnitude (MSB is 0, so direct binary representation)
Bit16 gy | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit
MSB [15 | 14|13 |12|1n]10]9o |8 7|65 al|3]2]1

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Now, 32768 is 32767+1. If 1 is added in